Plot-Level Quantification of Snow Melt for Old-Growth Forest Plots of the Pacific Northwest Using Low-Cost Temperature Sensors

Charles Mullis (charles.mullis@richmond.edu)
Dr. Todd Lookingbill, Dr. Tihomir Kostadinov

Camera images could be used to verify the accuracy of the HOBOs in determining snow cover. An automated image classification was also attempted to automate the verification process as well as to provide fractional snow-covered area (fSCA) as an additional metric.
Regions of Interest (ROI) were drawn around each HOBO in the image, as well on a large area with homogenous ground cover. The classification converted the colored image to black and white. Pixels in each ROI were counted to obtain fSCA.

fSCA of all visible HOBOs from January to May of each year when HOBOs record snow. Although the classifier was able to accurately classify binary snow/no snow values for images during the peak (Jan/Feb) and trough (April/May) seasons, the higher incidence of farse intermediate fSCAs overall suggest that the classifier did a poor job of accurately detect our final
comparison with the Snow estimates derived from the HOBO sensors.

Graph represents when a single HOBO recorded snow (blue) or no snow (black) during a six-year period. The graph indicates a relatively consistent snowcover from Dec - Feb, with the exception of 2015. Snow is absent from May-Oct. Spatial and temporal variability was generally greatest in March.
Summary of all 122 HOBOS

The boxplot shows the number of days of snow each HOBO recorded each year between March 21 and June 30. A two-tailed t-Test between the years 2014-2016, years with high El Niño values, and 2013, 2017-2019 was significant ($t(584)=-9.47, p=2.88 \mathrm{E}-20$), suggesting that El Niño may have influenced snow totals.

Conclusion

- Snow patterns are more strongly influenced by shorter-term teleconnections such as El Niño Southern Oscillation than longer-term trends associated with climate change. - The HOBOs provided more accurate data for snow cover than than image classification - The shoulder season in late March/early April can be relatively well quantified using the HOBO technology.

