

Higher order

PROTEIN DENATURING

Polar bonds vs. Non-polar bonds

Polar bonds have a separation of charge due to unequal sharing of electrons in the covalent bond. The δ - atoms has "more" of the electrons and is therefore more negative (since electrons are negative)

Shown below is a drawing of a peptide.

Which labeled boxes contain polar (G) (D) bond(s). HC СН нċ (A) (C) the peptide ĊH₂ H ĊΗ₂ "backbone" is colored red Ĥ ĊH₂ (E) H₂C CH. **(B)** с́н₃ (\mathbf{F})

> Which boxed areas of the peptide structure are hydrophobic (literally, "fears water")

Hydrogen bonds stabilize protein secondary structure

An alpha helix is the shape the peptide backbone takes

Beta (β) strands(sheets) are another type of protein secondary structure

Secondary Structures

Proteins *fold* to bury the hydrophobic part and expose the hydrophilic parts

Proteins are *amphiphilic* molecules - they have both *polar* (*hydrophilic* = "loves water") and non-polar (*hydrophobic* = "fears water") parts. In nature, we find proteins in water based environments.

As not all parts of the protein love the water, the protein *folds* in a 3-dimensional way that buries the *hydrophobic* parts on the inside of the structure, and exposes the *hydrophilic* parts to the outside, where they can interact with the watery environment.

There are two representations of avidin below. The first (a) shows the overall globular protein in a "space filling" model. The second (b) is a slice right through the middle of avidin – so we can see what the protein looks like on the inside.

Time to Check-In

Join with this CODE at join.nearpod.com or in the app: JPXKM

https://share.nearpod.com/vsph/VzJ1AxgtMu