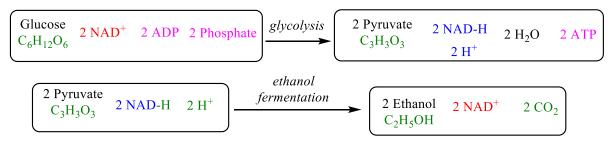
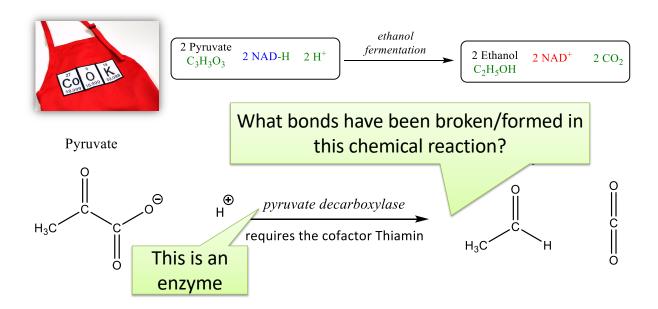
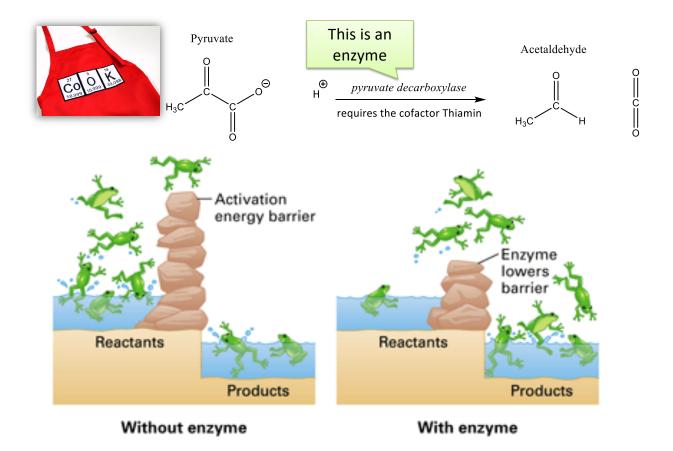


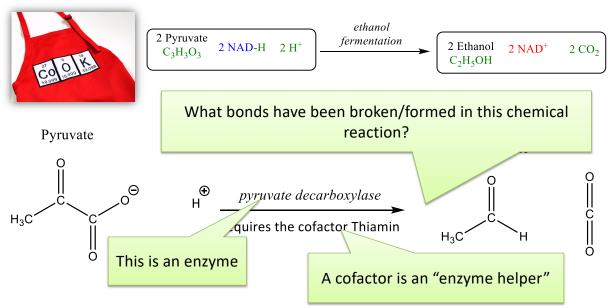
Unit 1

YEAST, ENZYMES, AND COFACTORS




The steps of glycolysis											
		Substrate(s) consumed	Product(s) produced	Enzyme catalyst							
These steps = 1X per glucose	1	Glucose + ATP	Glucose-6-phosphate + ADP	Hexokinase							
	2	Glucose-6-phosphate	alyst makes the chemisti	Phosphoglucoisomer <i>ase</i>							
	3	Fructose-6-phosphate easi	er. It is NOT a substrate	osphofructokin <i>ase</i>							
	4	Fructose-1,6-bisphospł	nor a product glyceraldehyde-3-phosphate	Jolase							
	5	Dihydroxyacetone phosphate	glyceraldehyde-3-phosphate	Triose phosphate isomerase							
These steps = 2X	6	Glyceraldehyde-3-phosphate + Phosphate + NAD ⁺	1,3-bisphosphoglycerate + NAD-H	Glyceraldehyde-3- phosphate dehydrogen <i>ase</i>							
	7	1,3-bisphosphoglycerate + ADP	3-phosphoglycerate + ATP	hosphoglycerate kin <i>ase</i>							
	8	3-phosphoglycerate	2-phosphoglycerate	Phosphoglycerate mut <i>ase</i>							
	9	2-phosphoglycerate	phosphoenolpyruvate + H ₂ O	enol <i>ase</i>							
	10	Phosphoenolpyruvate+ ADP	Pyruvate + ATP	Pyruvate kin <i>ase</i>							

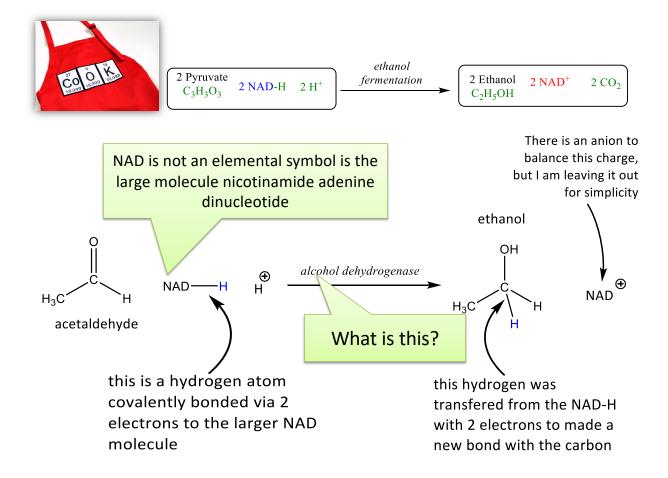

How does the process of consuming glucose produce energy?

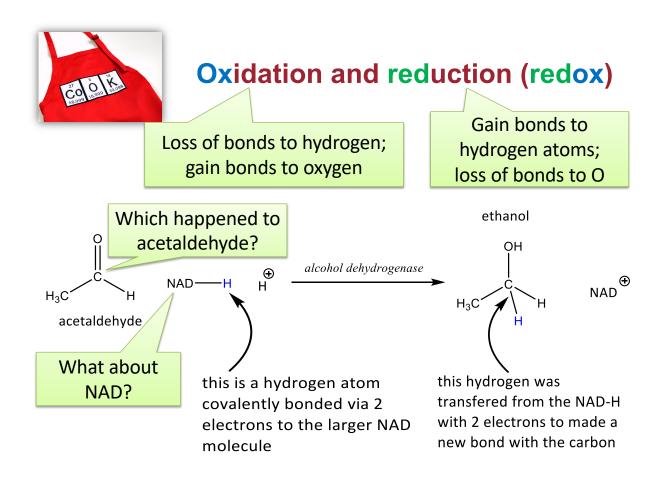


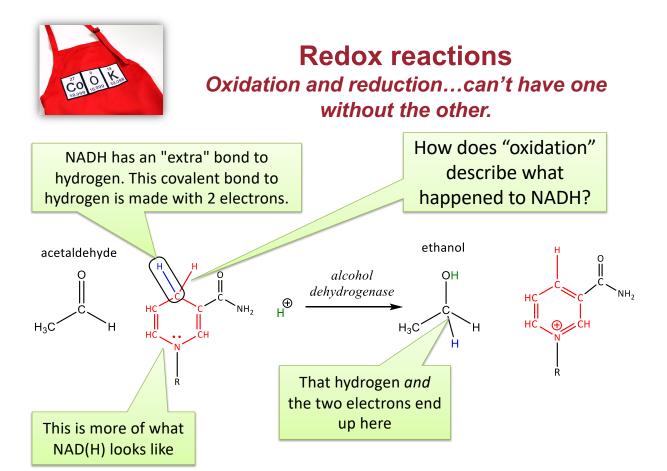
- At the conclusion of glycolysis, there is a net production of the energy molecule ATP, but a net *consumption* of the molecule NAD⁺.
- One molecule of NAD⁺ was converted to NAD—H.
- Every organism that breaks down glucose via glycolysis that includes humans and *S. cerevisiae* (baker's/brewer's yeast) – must have a way to regenerate the NAD⁺ from the NAD—H or *metabolism* – the chemical reactions that create life – will cease.

An *enzyme is a kind of protein*. When an **enzyme** catalyzes the chemical reaction it accelerates the rate (or speed) of the reaction without being a reactant or a product. The enzyme (or catalyst) is unchanged by the reaction; it only helps the reaction go faster.

- Sometimes, enzymes need a little help to catalyze difficult chemical reactions.
- **Cofactors** can be organic (that is, containing carbon atoms) or inorganic (that is, containing no carbon atoms) molecules that are required by an enzyme to catalyze its reaction.
- Compared to the enzyme itself, which is a large macromolecular protein, cofactors are relatively small.

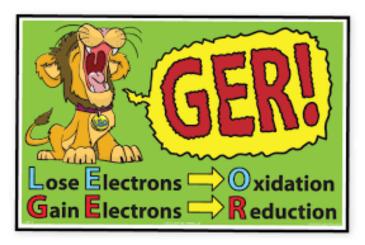

Common organic Cofactors

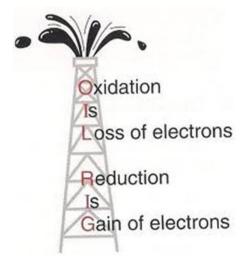

(organic means...made of carbon)

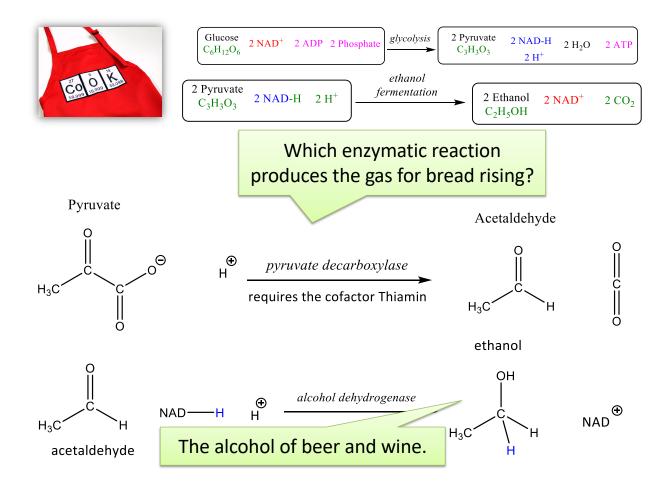

Cofactors are "small(er)" molecules that are necessary for some enzymatic reactions.

Cofactors for enzyme catalyzed reactions that are also Vitamins.								
Cofactor	Vitamin name	Condition caused by						
		deficiency						
FAD – flavin adenine dinucleotide,	Riboflavin	Slow growth						
FMN – flavin mononucleotide								
Thiamin	Vitamin B1	Beriberi						
Coenzyme A	Vitamin B3	Deficiency is very rare						
Biotin	Biotin	Dermatitis						
Pyridoxal phosphate	Vitamin B6	Various symptoms						
Tetrahydofolate	Folate/Folic Acid	Anemias						
Adenosylcobalmin	Vitamin B12	Pernicious anemia						
L-Ascorbic Acid	Vitamin C	scurvy						

Crop Con Like		PERCENTAGE OF U.S. RECOMMENDED DAILY ALLOWANCES (U.S. RDA)				
				CEREAL	WITH SKIM MILK	
	PRO	TEIN		4	15	
	VITA	MIN A		25	30	
WITHRALLY FLACERED HONEY, NUT	VITA	MIN C		* *	2	
Choorios	THIAN	MIN		25	30	
	RIBO	FLAVIN		25	35	
inguina television OATS	NIACIN			25	25	
	CALC	NUI		* *	15	
Contraction of the second	IRON	1		100	100	
Guiter Free	VITA	MIN D		10	25	
Sectional Read South Local and Local Local Read Read	VITA	MIN B6		25	25	
	FOLIC ACID		25	25		
	VITA	MIN B12		25	35	
		PHORUS		15	25	
Wait a minute! Weren't		NESIUM		15	20	
talking about yeast? Why	y do			25	30	
people eat Vitamins	?	PER		8	10	







Redox Reaction

