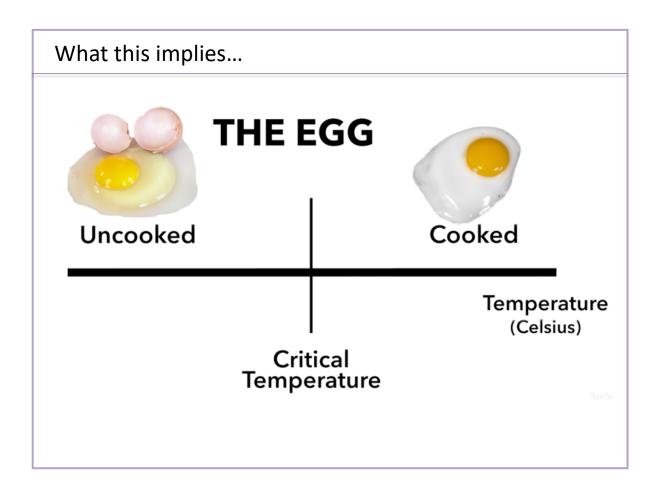
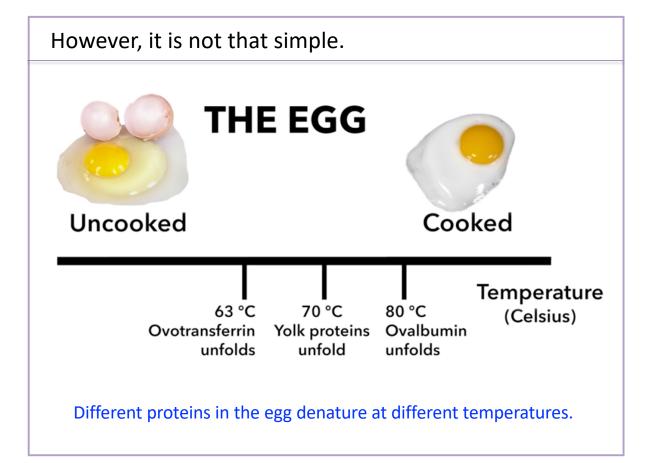
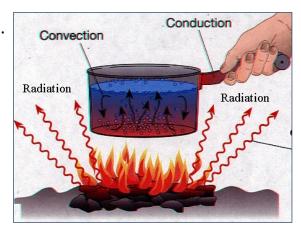
Cooking with Heat


What is cooking?


Oxford English Dictionary:

"To prepare or make ready (food); to make fit for eating by due application of heat, as by boiling, baking, roasting, broiling, etc."



How do we cook?

- Transfer heat from fuel to food.
 - gas, charcoal, wood
- Joule (J)
 - unit of energy

1 J An apple falling from 1 meter.

230 J Fastball @ 100 mi/hr

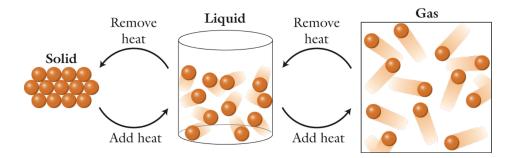
5000 J 220 lb tackle running 40 yd in 4 sec

Burning of 1 kg (2.2 lbs) of wood

How much energy will your food absorb as it cooks?

• Depends on how much energy your cooking instrument puts out over an amount of time.

$$\frac{energy}{time} = \frac{joules}{\sec} = watts$$



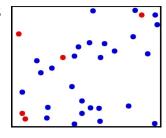
How much energy (J) does a 10,000 W stove produce in 20 min?

Where does the heat go?

Most food molecules do change from one phase to another when heated:

They also react to form different molecules.

What is heat?


- Heat is the energy that flows between two samples of matter due to their difference in temperature.
 - Usually denoted by the letter Q or q.

What is temperature?

 A measure of the energy in the motion of the molecules in a material.

Jiggling and whizzing of molecules

Causes changes to happen

How much energy does it take to cook an object?

- For example: an egg
 - Depends on three things:
 - 1. The mass (m) of the egg
 - 2. The beginning and ending temperature

$$T_{final} - T_{initial}$$
 (°C) = ΔT

- 3. How much the material heats up when a certain amount of energy is given to it heat capacity (C_p)
 - Varies with the food item.

$$Q = mC_p \Delta T$$

Q = amount of heat dumped into a food.

Specific Heats

Food item	Specific Heat (J/g•K)	
Water	4.18	—
Egg	3.18	Most food are between water and oil
Milk	3.85	
Beef	2.5-2.1	
Olive oil	1.97	
Air	1	

How much energy does it take to boil a cup water?

$$Q = mC_p \Delta T$$

Given/known values

$$Q = mC_p\Delta T$$

 $Q = (237 g)(4.18 \frac{J}{g \cdot K})(77 \text{ °C})$
 $Q = 76,281 J$

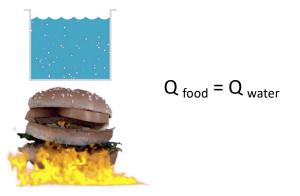
Look at units we encounter.

How can we relate joules to Calories?

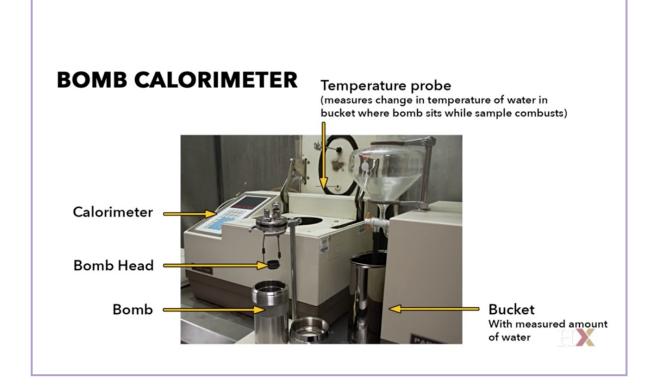
Calorie

= the energy it takes to heat up 1 L (kg) of H₂O by 1 °C.

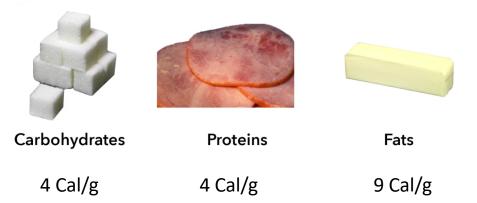
$$Q = mC_p \Delta T$$


Food item	Specific Heat (J/g•K)
Water	4.18

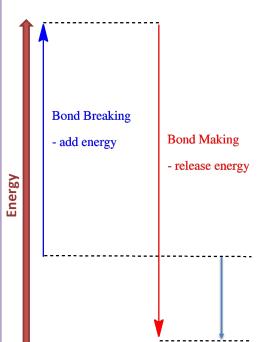
= 1000 g
$$(4.18 \text{ J/g} \cdot \text{K})(1 \, ^{\circ}\text{C})$$
= 4180 J = 4.18 kJ = 1 Calorie


How much boiling water do you need to cook the perfect egg (35 g)?

Principe of Conservation of Heat:


 Energy cannot be created or destroyed but merely transferred from one location to another.

How do we measure calories in the real world?



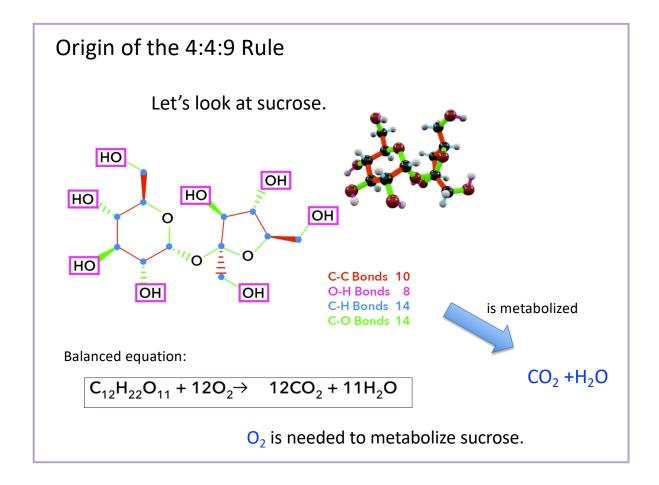
CALCULATING THE CALORIE CONTENT

Where does the 4:4:9 Ratio come from?

The amount of energy that is produced when a molecule is broken down to depends on which bonds are broken and which bonds are formed.

- Energy must be used to break bonds (costs energy).
- Energy is released when bonds form (releases energy).

Calculate the calorie content.



 $4 g \times 4 Cal/g = 16 Cal Protein$

47 g x 4 Cal/g = 188 Cal Carbohydrates

 $19 g \times 9 Cal/g = 171 Cal$ Fat

375 Cal

