

Maillard, Caramelization, and Enzymatic

BROWNING REACTION

Which would you prefer to eat?

Both chicken were cooked to a safe temp

- chicken on the left was pan fried
- the chicken on the right was boiled.

Most important chemical reactions that impacts taste.

Browning Reactions.

- set of chemical reactions
- tend to make cooked food have a brown color.
- make food more attractive and better tasting

The Maillard reaction is responsible for most browning in cooking

Maillard reactions - responsible for the browning of many foods including meat, the brown color on a loaf of bread, coffee beans and "caramelized" onions.

The Maillard Reaction

- Reaction between sugars and amino acids in the presence of high heat
- NOT the same as burning that just turns food to charcoal

How does Maillard browning work? Step 1 – Glucose "opens"

How does Maillard browning work? Step 2 - Dehydration

When meat is cooked, protein breaks down, as shown below.

The degraded protein is able to undergo a Maillard reaction with glucose released from the breakdown of muscle glycogen.

Glycogen is a polymer of glucose (i.e. "animal starch")