
## **COOKING WITH FATS**



# The Effect of Unsaturation on Consistency



(b) Hard fat (saturated): Fatty acids with single bonds between all carbon pairs



(c) Oil (unsaturated): Fatty acids that contain double bonds between one or more pairs of carbon atoms



## Cooking with fats and oils

A pure substance has a clearly defined melting point, but a mixture (a.k.a. an *impure* substance) melts over a broad range of temperature.

So what can we conclude about the *purity* of butter?

Any pure substances will have a clearly defined point at which it changes physical state (i.e. boiling, melting etc.). Impure substances do not.

| Table: Melting Characteristics of Butterfat |                   |                  |                   |
|---------------------------------------------|-------------------|------------------|-------------------|
| Temperature (°C)                            | Solid Content (%) | Temperature (°C) | Solid Content (%) |
| 5                                           | 43-47             | 30               | 6-8               |
| 10                                          | 40-43             | 35               | 1-2               |
| 20                                          | 21-22             | 40               | 0                 |

<sup>□</sup>Belitz, Hans-Dieter and Grosch, Werner. Food Chemistry. New York: Springer, 1999: 485.



### Structure vs melting point

#### **MELTING RANGES OF FATS**

The melting behavior depends on the composition





# Melting – a change in physical state

What is happening chemically as fats *melt*?



Butter is comprised of triglycerides with 62% saturated, 29% monounsaturated and 4% polyunsaturated fatty acids. Butter melts over a wider temperature range: 82.4 - 96.8 °F (28-36 °C). Most fats (like butter) do not have a sharply defined melting point, instead they soften gradually over a broad temperature range. As the temperature rises, the different kinds of fat molecules melt at different points and slowly weaken the whole structure.



### Do liquid cooking oils boil?

Fats will melt into oils when warmed, but if the heat is raised, most do not boil. Before the fat can reach a boil it *smokes* and breaks down instead (eventually, it can actually light on fire!). The **breakdown of fat at high temperatures** is due to several factors...

#### · Oxygen from the air

Oxygen in the air can *oxidize* the *cis* double bonds in unsaturated fats – creating **smelly and off-tasting by products and turning the fat rancid**. Some of these oxidation products of fats can be toxic and others are hazardous to cardiovascular health. This *oxidation* is accelerated at high temperatures – like when you are heating the oil in a pan.



## Do liquid cooking oils boil?

Fats will melt into oils when warmed, but if the heat is raised, most do not boil. Before the fat can reach a boil it *smokes* and breaks down instead (eventually, it can actually light on fire!). The **breakdown of fat at high temperatures** is due to several factors...

#### · Water in the air or in the fat

For example, butter is ~15% water

At high temperatures, water from the air (or contaminating the fat) reacts with the triglyceride to **break off a free fatty acid from the glycerol backbone.** This creates a *free fatty acid (FFA). Free fatty acids* taste bad and are less hydrophobic – which compromises the quality of the oil.



### Do liquid cooking oils boil?

Fats will melt into oils when warmed, but if the heat is raised, most do not boil. Before the fat can reach a boil it *smokes* and breaks down instead (eventually, it can actually light on fire!). The **breakdown of fat at high temperatures** is due to several factors...

For example, butter contains proteins and sugars that burn if the butter is over heated



#### · Purity of the fat

Contaminants like *free fatty acids*, proteins, sugars will burn in the oil at high temperatures producing dark colors and off-tasting molecules. Free fatty acids are naturally present in fats and oils in very small amounts, but the amount of *free fatty acids* increases as fats/oils are heated.

For example, animal fats contain some FFAs naturally



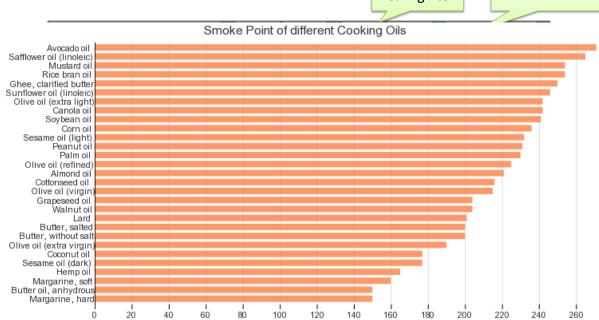
#### Cooking safely with fats and oils







The *smoke point* of an oil is a temperature at which the oil begins to break down into visual gaseous products. It is known that the smoke point is dependent upon that small concentration of *free fatty acids* in the fat/oil. So what affects free fatty acid content?


- <u>The type of oil</u>. Animal fats/oils have higher free fatty acid content than plant oils.
- <u>Oil refining</u> (a method of purification). Refined oils have lower free fatty acid content than unrefined oils.
- <u>Age</u>. The longer a fat/oil sits exposed to oxygen and water (along with heat, in the case of cooking) the more *free fatty acids* will form. One use of an oil at high temperature can lower the *flash point* (or burst-in-to-flames point) by as much as 100°F due to the increase in free fatty acid content.



# Smoke points of common cooking fats/oils

Can ignite

Can sustain a fire



 $https://www.youtube.com/watch?v=pEVI8R9Q9 {\stackrel{\tiny PD}{E}W}^{ke\ point\ in\ {}^{\circ}C}$ 



# What should you do if an oil/fat lights on fire while cooking?

- out. Us Na dioxide

  Pour on Baking Soda Baking soda will extinguish grease fires, but only if they're small. It takes *a lot* of baking soda to do the job.
- Spray the Pot with a Class B Dry Chemical Fire Extinguisher This is your last resort, as fire extinguishers will contaminate your kitchen. Still, it's better than the alternative if the fire is getting out of control.
- **Get Out and Call 911** If the fire does break out of control, don't try to be a hero. Get out and find a phone to call 911.

http://www.thekitchn.com/kitchen-safety-how-to-put-out-138233

https://www.youtube.com/watch?v=pEVI8R9Q9EM