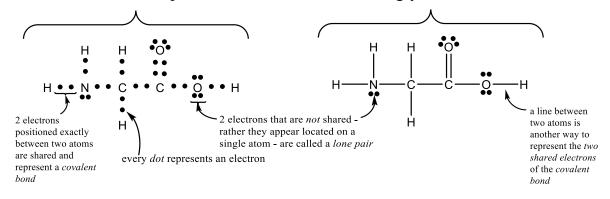


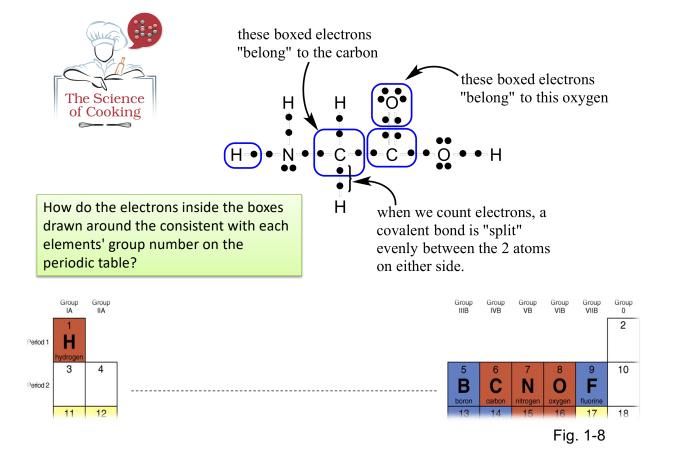
COVALENT BONDING

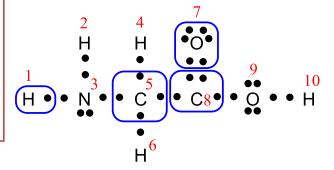


Covalent bonds are made of 2 electrons

Two representations of the molecule glycine

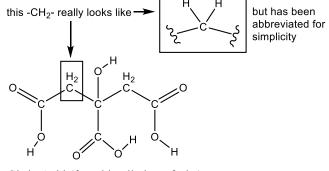
Every atom brings a certain number of electrons with it when it engages in bonding.


Hydrogen brings one electron, carbon brings 4, nitrogen brings 5, oxygen brings 6. For the elements most often found in food molecules (carbon, oxygen, nitrogen, hydrogen), you can tell how many electrons that atom will bring with it by checking that atom's position within its row on the Periodic Table.


The Periodic Table...of Food

	Group IA	Group IIA			F	1	H	0					Group IIIB	Group IVB	Group VB	Group VIB	Group VIIB	Group 0
Period 1	1 H			Н	• • •	1 • •	C •	• C	• •))	• H							2
Period 2	3	4	• • H						5 B	6 C carbon	7 N nitrogen	8 O oxygen	9 F fluorine	10				
Period 3	Na sodium	Mg magnesium	TRANSITION METALS							13 AI aluminum	14 Si	15 P	16 S sulfur	17 CI chlorine	18			
Period 4	19 K	20 Ca	21	22	23 V	24 Cr	Mn	Fe iron	Co cobalt	28 Ni	Cu copper	30 Zn	31 Ga	32	33 As arsenic	34 Se selenium	35 Br	36
Period 5	potassiani	caloidiii			Variadiani	42 Mo molybdenum	manganese	11011	CODUIT	THORES	СОРРСІ	48 Cd	gaman		arsomo	SCISIIGHT	53	
Period 6						74 W tungsten												
Period 7						agstorr					•							

¹¹ This Periodic Table comes from Concepts in Biochemistry by Rodney Boyer (published by Wiley)



Complete the image below by drawing boxes around each atom in the molecule – include within the box electrons that "belong" to that atom. Then complete the table that follows.

Atom	Number of electrons in the	Group number for that element	Number of covalent bonds formed with	Number (if any) of lone pairs on the atoms			
	box	on the periodic table	the atom	(electrons not in a bond)			
1 (H)							
2 (H)							
3 (N)							
4 (H)							
5 (C)							
6 (H)							
7 (O)							
8 (C)							
9 (0)							
10 (H)							

Citric Acid (found in all citrus fruits)

Vanillin - complete structural formula

Vanillin - Skeletal structure

Fig. 1-10