A Standardized and Interconnected Approach to Green Infrastructure Development in Virginia and Surrounding States Using Morphological Image Processing

Carroll Courtenay*, Todd Lookingbill
University of Richmond
*carroll.courtenay@richmond.edu

Purpose
To map the core areas (sections of forest or wetland habitat, greater than or equal to 250 acres in area) in Maryland, Washington, D.C., Virginia, West Virginia, and North Carolina to compare the state GI plans and to facilitate the development of an inter-state GI system.

Background
Green infrastructure (GI) consists of planned and managed networks of natural habitat, which strengthens habitat health by helping to maintain ecological processes and diversity. Many states have worked to develop GI networks in order to preserve natural resources and ecological processes. However, these networks plans take considerable time to develop and are unable to respond quickly to landcover changes or conservation priorities. There is also no uniform process for developing GI plans, and some states have no plan at all. Table 1 briefly describes the GI plan for each state in the study area.

We used morphological spatial pattern analysis (MSPA) as a tool to quickly and uniformly develop GI networks for Virginia and its neighboring states. MSPA uses the structural components of natural landcover to develop a network of core and corridor areas. In previous studies, MSPA-based networks have reasonably approximated the GI networks developed by state programs (Wickham et al., 2010). MSPA are relatively simple to identify, and the approach allows core and corridor areas to be developed between states using consistent methods. Since habitats do not end at state borders, it is important to developed GI plans that are ecologically functional at regional scales.

Methods
Figure 4. Using the software GUIDOS 1.3, a MSPA was run to reclassify the landcover into 7 structural classes.

Results
Table 2. Summary of three main conservation approaches considered: MSPA core, state GI network core, and US Protected Areas.

Table 2. Summary of three main conservation approaches considered: MSPA core, state GI network core, and US Protected Areas.

<table>
<thead>
<tr>
<th>State</th>
<th>GI Networks</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maryland</td>
<td>Maryland’s Green Infrastructure Assessment</td>
<td>Large contiguous blocks of natural land and corridors were developed to allow plant and animal movement. The assessment is used to identify and prioritize these areas of greatest statewide ecological importance (Weber et al., 2006).</td>
</tr>
<tr>
<td>Washington, D.C.</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Virginia</td>
<td>Virginia Natural Landscape Assessment (VNLNA)</td>
<td>Core areas of unfragmented natural cover, along with a system of natural landscape corridors, were created to the green infrastructure program. An Ecological Integrity Model was developed to rank these sites based on a number of different ecological attributes (Weber, 2008).</td>
</tr>
<tr>
<td>West Virginia</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>North Carolina</td>
<td>One North Carolina Naturally Initiative, Conservation Planning Tool (CPT)</td>
<td>The One North Carolina Naturally Initiative focused conservation planning on connecting already conserved areas. CPT refines the conservation focus, identifying and prioritizing essential natural resources required to maintain ecosystems (Douglass).</td>
</tr>
</tbody>
</table>

Figure 11. Percentage of State GI Network Core that was identified as MSPA Core Area. The MSPA approach produced a nearly identical GI network to the Maryland state plan. Overlap for the Virginia state plan was around 50%. Washington D.C. and West Virginia do not have state GI networks.

Figure 12. Percentage of Protected Areas that were identified as MSPA Core Area. Less than 10% of the land identified as potential core areas is already protected in Virginia and North Carolina. Although West Virginia does not have many PAs, over 70% are MSPA core. Washington D.C. does not have any IUCN Class I or II US Protected Areas.

Conclusion
As there is no single, national method for GI development, variations between the plans was expected. However, ecosystems do not end at state borders. In order for GI networks to be successful and function to their full capacity, an effort must be made to connect and standardize the development of these networks to create inter-state systems. MSPA offers relatively simple and uniform methods for constructing GI networks. The cores derived through MSPA overlap relatively well with GI networks for each state (92.8% in Maryland, 64.2% in North Carolina, and 48.0% in Virginia). It’s particularly useful in states where the amount of natural landcover is low (e.g., Maryland). In states that are still largely forested (e.g., West Virginia), a more restrictive criteria for defining MSPA Cores (e.g., core area requirements of 500 acres or more) might be a more reasonable goal for GI Plans. MSPA, however, offers a starting point for the process. Functional attributes could be added later to the development of GI networks, creating more complex systems.

MSPA Network Cores
Figure 9. MSPA Cores (greater than or equal to 250 acres). Note the density of cores in West Virginia, a state that does not have a GI plan but has a lot of GI potential.

Bibliography and Acknowledgements
green_landscape_assessment_011208.pdf

I would like to thank the University of Richmond spatial analysis lab, Marcela Suarez and the University of Maryland Center for Environmental Science, and the Virginia Department of Conservation and Recreation’s Natural Heritage program for all of their generous help and support during this project.