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Stochastic Genetic Networks with Solvable Structures
Ovidiu Lipan

Department of Physics, University of Richmond, Richmond, Virginia 23173, U.S.A.

Abstract. We describe a set of basic stochastic biocircuits for which the Master Equation is completely solvable. Beside
linear circuits, which are known to be solvable, we show that tree-like circuits with polynomial transition functions are
also completely solvable. We associate a simple but unambiguous graphical representation to such circuits. The graphical
representation shows the signal propagation through these simple circuits.

Keywords: stochastic genetic networks
PACS: 87.18.Cf,87.15.H-,87.15.Ya

INTRODUCTION

This study is driven by three main goals: (i) the need to express the regulatory genetic networks as visual diagrams (ii)
the mathematical model for a genetic network should be stochastic and unambiguously recoverable from the visual
diagram, and (iii) the stochastic mathematical model should be completely solvable. The first goal stems from the
usual presentation of the data in the field of molecular biology [1, 2]. Pathway maps of molecular interactions drive
the scientific dialog and also represent the source of new testable hypothesis for the experimentalist. The second
goal asks for a stochastic model instead of a deterministic one [3, 4, 5, 6]. Although deterministic models are useful
for some genetic networks, the basic fact that a molecular interaction is a probabilistic phenomenon implies that
the fundamental mathematical model should incorporate stochastic principles. The second goal also require a tight
correspondence between the visual diagram and the mathematical model. Such a correspondence, setting aside the
sytochasticity, presents an interest by itself [7].

The study of solvable models, which is the third goal, is valuable at least for two reasons. One reason is that for
solvable models there is no need to use numerical simulations which can be costly for large networks. A second reason
is that solvable models can be used to check different analytic approximation methods for unsolvable models and also
to develop heuristics for efficient algorithms.

THE MATHEMATICAL MODEL AND ITS SOLUTION FOR A TREE-LIKE
STOCHASTIC BIOCIRCUIT

In what follow we present, by way of example, a short introduction to the notations we use for the visual diagrams
and the associated stochastic model. An extended description can be found in [3]. These notations will also be used
to describe the solvable models. The example consists of a biocircuit composed of three molecules Fig.1A. Two
molecules interact to regulate the production of the third molecule. In chemical reaction notation the process is codified
by A+B→ C. The molecule A binds to the molecule B forming a complex A : B which then drives the production
of the third molecule C. The complex A : B is not present as an additional molecule in Fig.1A. The probability per
unit time for the production of the molecule C is proportional with the product q1q2, [8]. Here q1 and q2 represent
the number of molecules of type A and B, respectively. The number of molecules of the C-type is denoted by q3. The
set of numbers q = (q1,q2,q3) represent the state of the biocircuit. The set is composed of nonegative integers, so the
model is discrete in the state variable. The state changes in time and fluctuates stochastically. Both characteristics are
specified through the probability, P(q1,q2,q3, t), that the number of molecules takes the values (q1,q2,q3) at time t.
This probability, written in short form as P(q, t), is known only after solving the Master Equation:

∂P(q, t)
∂ t

= ∑
ε

Tε(q− ε, t)P(q− ε, t)−P(q, t)∑
ε

Tε(q, t) (1)
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Here, the initial probability distribution P(q,0) is given, together with the transition probabilities per unit time Tε(q, t).
The transition probabilities represent the building blocks of the stochastic model and are based on experimental data
or they are considered as part of the definition of the biocircuit. For the biocircuit from Fig.1A, the ε variables
are ε1 = (1,0,0),ε2 = (0,1,0) and ε3 = (0,0,1), with the corresponding transition probabilities Tε1(q, t) = g1(t),
Tε2(q, t) = g2(t) and Tε3(q, t) = f (t)q1q2. The difference q−ε3 in (1) is (q1,q2,q3−1) and similarly for the other two
transitions. To see the meaning of this difference consider that the biocircuit is in the state (q1,q2,q3−1) at some time
t. Then the biocircuit jumps to (q1,q2,q3), through an increase of q3 by one molecule. The increase is due to Tε3 . The
lines that start at q1 and q2 join together to represent the product q1q2 and than ends on the box representing ε3. These
lines describe the formula for the transition probability Tε3 that controls the behavior of the third molecule. For this
reason the lines that represent the transition probabilities are called control lines. From the other types of lines, that
start from the center of the boxes and end on molecules, we can read the components of the vector ε . For ε3 there
is only one line that ends on q3 so only the third component of ε3 is not zero. If another line were to start from the
box representing ε3 and end on q2 than that ε3 would be (0,1,1). These lines are called action lines. The arrow at the
end of an action line depicts, as is customary in biology, a production of a molecule, thus a positive number for the
corresponding component of ε . A negative number is depicted by ending the line with a short bar. The control lines
that act on ε1 and ε2 can be imagined as starting from other molecules that have a constant number equal to 1. Such
constant molecule numbers are not represented in the molecular diagram. In what follows we generalize the transition
probabilities that appeared in the reaction A+B→C. The generalization is based on the system of decreasing factorials

emk = qk(qk−1)...(qk−mk +1) (2)

where k labels each molecule present in the biocircuit. In a system with qk molecules of specie k, the probability for a
collision of mk molecules (all of the same species k) is Mmk(t)emk , [8]. The superscript mk for Mmk must be generalized
to a vector m = (m1,m2, ...,mN) if interactions between N different molecular species are considered. The bar over
m is needed to distinguish the vector index m from a tensor index m = (11122333...) that contains the number 1 m1
times, the number 2 m2 times and so on. The tensor index will be used later.

The transition probability, for one action ε , is represented as a linear combination of products of decreasing factorials

Tε(q, t) = ∑
m

Mm
ε (t)em(q) (3)

with em(q) = em1(q1)em2(q2).... In a biocircuit, for a given ε , the majority of the functions Mm
ε are zero, except for

those represented by the control lines that end on the box corresponding to the given ε . To the set of decreasing
factorials we add e0 = 1 which represent the control line coming from a molecule that does not change in time, like
the control lines g1(t) and g2(t) in Fig.1A. The set of all decreasing factorial forms a basis of polynomials that is
used to represent the transition probabilities for the time evolution of the biocircuit. The experimentally measured
value usually consists of the mean and standard deviations of the molecule numbers qk, k = 1...N. These statistical
quantities can be obtained from the partial derivatives at z≡ (z1, ...,zN) of the generating function

F(z1,z2, ...,zN , t) =
∞

∑
q1=0,...,qN=0

zq1
1 ...zqN

N P(q1, ...,qN , t) (4)

For example, the mean value of q3 is ∂z3F computed at (z1 = 1, ...,zN = 1). The standard deviation of q3 can be
computed from the mean value of q3(q3−1) which is the second derivative ∂z3,z3F evaluated at z = 1. The correlations
are obtained from mixed partial derivatives, like ∂z1,z2F. All these partial derivatives evaluated at z = 1 are called
factorial moments. The tensor index come in handy in representing these factorial moments: Fm(t) = ∂mF(z, t)
computed at z = 1. The vector m and the tensor index m will be used interchangeably. The Master Equation (1)
transforms into an equation for the generating function

∂F
∂ t

= ∑
ε,m

(zε −1)zmMm
ε ∂mF (5)

Here the vector z raised at a vector power ε or m means the product of each z-component raised at the corresponding
component of the vector power, zm1

1 zm2
2 ...zmN

N . A system of ordinary differential equations for the time evolution of the
factorial moments Fm(t) is obtained from (5). For this we introduce the function Qm(ε) defined by ∂mzε = Qm(ε)zε−m,
where the partial derivative is taken componentwise ∂m = ∂m1∂m2 .... The tensor index is useful for indexing the
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moments Fm(t) because taking a partial derivative ∂α over zα extends the index m to mα . The Greek letters α,β , ...
are used to denote a tensor index of length 1. The length of an index is m1 + ...+mN . If desirable, after concatenation,
the tensor index mα can be rearranged in an increasing order.

The time evolution of the factorial moments are obtained from applying the operator ∂α1,α2... on the Master Equation
(5). The action of this operator on a product of function f (z)g(z) is written as

∂α1...αn( f g) = {∂α1...αk f ∂αk+1...αng}α (6)

The braces indicates a summation over all pairs of disjoint sets α1, ...,αk and αk+1, ...,αn. Finally, the time evolution
of the factorial moments is

d
dt

Fα1...αn(t) = ∑
m
{Rm

α1...αk
(t)Fmαk+1...αn(t)}α (7)

The functions Rm
α1...αk

(t) are linear combinations over the actions ε of the controls Mm
ε (t)

Rm
α1...αk

(t) = ∑
ε

Cε
α1...αk

(m)Mm
ε (t) (8)

The time-independent coefficients Cε
α1...αk

(m) are sums of products of the functions Qαk(m),Qαk(ε +m), k = 1...n.
For example

Rm
α1α2

(t) = ∑
ε

(Qα1α2(ε +m)−Qα1α2(m))Mm
ε (t) (9)

where the Q-function with concatenated indices α1α2 is recurrently obtained from the definition Qmα(ε) =
Qm(ε)Qα(ε−m).

Usually, for a biocircuit composed of N molecular species only the mean values Fαi and the second order moments
Fαiα j , i, j = 1...N are of interest. Unfortunately, for a general biocircuit, the system of equations (7) does not produce
a finite closed subsystem of equations that involve only the first and the second order moments. For example, the
existence of feedback loops in the biocircuit produce moments of order 3 and possible higher on the right hand side of
the (7) computed for n = 2. The concatenated tensor index mα1...αn in (7) is responsible for increasing the order of the
moments on the right side of (7) with respect to its left side. For linear biocircuits, for which the transition probabilities
Tε are linear functions of qk, k = 1..N, the functions Rm

α1...αk
(t) are conveniently zero in such a way that the equations

for the first, second and all other moment order close exactly at that moment order.
So, the question is if there are nonlinear biocircuits for which a closed finite subsystem of equations can be extracted

from (7). For example, it may be the case that to obtain the time evolution of Fαiα j we need also to find the time
evolution of a 4-th order moment Fβiβ jβkβl

. However, the system of equation involving some additional higher order
moments should be finite.

The answer is positive. In fact all tree-like biocircuits with polynomial transition probabilities (3) are solvable,
producing a finite system of equations for any desired moment order.

By a tree-like biocircuit we understand a network that does not contain any loops. The structure is a directed graph
connecting "parents" with "children". For a tree-like biocircuit, a term (zε −1)zm∂mF describes the control of parents
m on the children ε . In other words, if a molecule qk is present in the parent index m = (m1,m2, ...,mn), that is mk 6= 0,
then the molecule qk is not part of the children ε = (ε1, . . . ,εn), which means εk = 0. The reverse is also true, namely
if ε j 6= 0 then m j = 0.

Consider now a molecule qp that belongs to the parent set that act on the children set from which we will select one
molecule qc.

We want to compute dFc/dt and dFcc/dt and show that a finite system of equations can be formed for the time
evolution of Fc and Fcc. Using ∂czm = 0 and ∂pzε = 0 we get the contribution (symbolized by←) of (zε −1)zm∂mF to
∂c∂tF

∂c∂tF ←Qc(ε)zε−czm
∂mF +(zε −1)zm

∂mcF

∂cc∂tF ←Qc(ε)Qc(ε− c)zε−2czm
∂mF+

+2Qc(ε)zε−czm
∂mcF +(zε −1)zm

∂mccF

Evaluating the result at z = 1 the term containing Fmcc is eliminated but Fmc remains in the system. Because of
the concatenation with the tensor index m, the order mc is higher than 2, which may lead to an infinite system of
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equations. Fortunately the time evolution of Fmc depends only on the parent index m, a fact that leads to a finite system
of equations. Indeed, take a parent molecule qp from the control index m and find

∂p∂c∂tF ← Qc(ε)zε−c
∂p(zm

∂mF)+(zε −1)∂p(zm
∂mcF) (10)

The Fmc disappears form the left hand side of (10) when it is evaluated at z = 1. Thus the time evolution of Fc,Fcc,Fmc
can be written only in terms of the moments of parent indices. The system of equation will contain moments higher
than 2, but all these higher moments refer to parent indices. The same logic applies for Fccc and higher children
moments.

To solve a tree-like structure we need to decide first on the order of the highest moment for the molecules that does
not control any other ones. These molecules are found at the bottom of the tree. Going backwards from the bottom of
the tree towards its top, the system of equations will move from one children layer to a parent layer until the equations
for the molecules on the top of the tree are found. The needed equations are selected step by step as the computation
proceeds upward in the tree. The last equations are provided by the molecules from the top of the tree. Looking at the
structure of the finite system of equations, the molecules from the top of the tree will contribute with moments of order
higher than those below them. Going down in the tree, the moment order contributed by the molecules decreases, until
the bottom of the tree is reached. There the moment order is the one which was set from the beginning.

To exemplify the procedure, we will study the simple but fundamental biocircuit of Fig.1A. The finite system of
equations that goes up to second order moment for the third molecule, F33, contains 13 equations. The moment F33
depends only on F123. The parent molecules q1 and q2 contribute with a moment of order 4, F1122. This is needed to
find the correlation of all three molecules F123.

1. F ′1 = g1

2. F ′11 = 2g1F1

3. F ′2 = g2

4. F ′22 = 2g2F2

5. F ′12 = g2F1 +g1F2

6. F ′3 = f F12

7. F ′112 = g2F11 +2g1F12

8. F ′122 = 2g2F12 +g1F22

9. F ′1122 = 2g2F112 +2g1F122

10. F ′13 = f F112 + f F12 +g1F3

11. F ′23 = f F12 + f F122 +g2F3

12. F ′123 = f F112 + f F1122 + f F12 + f F122 + g2F13 +
g1F23

13. F ′33 = 2 f F123

The stochastic state of the biocircuit is (q1,q2,q3). Focusing on the system of moments, the state can be viewed
as a set composed of 13 moments that form a finite system of equations. The increase from 3 to 13 in the number
of state-components is the trade-off for avoiding generating tens of thousands of different stochastic trajectories for
the stochastic state (q1,q2,q3) in order to compute the evolution of the moments. The system of equations for the
moments opens the possibility of treating the biocircuit evolution as a linear input-output mapping. For example, a
simple input-output relation become apparent for the mean values of q1 and q2

F1(t) = F0
1 +

∫ t

0
dt1g1(t1)

F2(t) = F0
2 +

∫ t

0
dt1g2(t1)

(11)

Here F0
1 ,F

0
2 are the initial mean values F1(0),F2(0) and are considered as the input variables. The output variables are

F1(t),F2(t).
The linear input-output relation for all the other moments can be represented as nested integrals. For example, the

time evolution of the mean value for the q3 molecule is

F3(t) =
∫ t

0
dt3 f (t3)

∫ t3

0
dt2 g1(t2)

∫ t2

0
dt1 g2(t1)+

∫ t

0
dt3 f (t3)

∫ t3

0
dt2 g2(t2)

∫ t2

0
dt1 g1(t1)+

F0
1

∫ t

0
dt3 f (t3)

∫ t3

0
dt2 g2(t2)+F0

2

∫ t

0
dt3 f (t3)

∫ t3

0
dt2 g1(t2)+

F0
12

∫ t

0
dt3 f (t3)+F0

3

(12)
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As Fig.1A shows, the product of the molecules q1q2 controls of F3. To make this product visible in F3(t) we use

∫ t3

0
dt2 g1(t2)

∫ t2

0
dt1 g2(t1)+

∫ t3

0
dt2 g2(t2)

∫ t2

0
dt1 g1(t1) =(∫ t3

0
dt2 g1(t2)

)(∫ t3

0
dt2 g2(t2)

) (13)

and obtain

F3(t) =
∫ t

0
dt3 f (t3)

(∫ t3

0
dt2 g1(t2)

)(∫ t3

0
dt2 g2(t2)

)
+

F0
1

∫ t

0
dt3 f (t3)

∫ t3

0
dt2 g2(t2)+F0

2

∫ t

0
dt3 f (t3)

∫ t3

0
dt2 g1(t2)+

F0
12

∫ t4

0
dt3 f (t3)+F0

3

(14)

Dropping the integral sign in a nested integral we arrive at a simple notation for the mean value F3(t)

F3(t) = f g1g2 + f g2g1 + f g2F0
1 + f g1F0

2 + f F0
12 +F0

3 (15)

Representing the product rule (13) as g1g2 +g2g1 = (g1g2) we get

F3(t) = f (g1g2)+ f g2F0
1 + f g1F0

2 + f F0
12 +F0

3 (16)

The moments with a zero superscript represent, as before, the values the moments take at the initial time and are
considered the input variables.The output variable is F3(t). The time evolution can be represented in a diagram form.
Each integral is represented by a wiggly line labeled by the function that is integrated. A nested integral is represented
by connecting a sequence of wiggly lines. The connector is a circle with a dark rim. The term f g1g2 is represented
by a three wiggly lines Fig.1B. For the product of two integrals the connector is a dark disk. The diagram for the
free term f g1g2 + f g2g1 = f (g1g2) in (15) and (16) is presented in Fig.1B. The product form of the nested integral
closely resembles the molecular diagram. The nested integrals diagrams can easily be extended to incorporate the
initial conditions F0, using, for example strait instead of wiggly lines. For this paper the nested integrals diagrams are
restricted to the free terms which are terms that does not depend on any initial moments.

F12(t), which represents the average of the product q1q2, is especially important for this biocircuit because the third
molecule q3 is controlled by the product of the molecule numbers q1 and q2. The solution for F12(t) is

F12(t) = (g1g2)+g1F0
2 +g2F0

1 +F0
12 (17)

The mean value F3(t), (16), is obtained by gluing the transition probability function f (t) from the left of (17). The
gluing process applies for other moments also, Fig.2A, where the free term of F112 is obtained by gluing the free term
of F1 on every node of the diagram representing the free term of F12.

The free term of F33(t) is

4 f f g1g2g1g2 +4 f f g2g1g1g2 +4 f f g1g2g2g1 +4 f f g2g1g2g1 +4 f f g1g1g2g2 +4 f f g2g2g1g1+

2 f g2 f g1g2g1 +2 f g2 f g1g1g2 +2 f g2 f g2g1g1 +2 f g1 f g1g2g2 +2 f g1 f g2g1g2 +2 f g1 f g2g2g1+

f g1g2 f g1g2 + f g2g1 f g1g2 + f g1g2 f g2g1 + f g2g1 f g2g1+

2 f f g1g2g1 +2 f f g2g1g1 +2 f f g1g2g2 +2 f f g2g1g2 +2 f f g1g1g2 +2 f f g2g2g1+

f g1 f g1g2 + f g1 f g2g1 + f g2 f g1g2 + f g2 f g2g1 + f f g1g2 + f f g2g1

(18)

Each nested integral factor of (18) can be represented by diagrams. Some of these terms are drawn in Fig.2A. These
diagrams can also be interpreted as being generated by gluing together two smaller diagrams.
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FIGURE 1. The basic control A+B→ C. A) The A,B and C molecule numbers are q1,q2 and q3 respectively. B) The nested
integrals diagrams for the free term of the mean value F3. The diagram in the product form follows closely the molecular diagram
from panel A.

FIGURE 2. Gluing the nested integrals diagrams. A) The free term of the moment F112 can be obtained from gluing the diagrams
of the free terms that correspond to F1 and F12. It can also be obtained by gluing F11 with F2, not shown. B) Larger diagrams, with
6 branches, are necessary to represent some terms from F33. Other terms need fewer branches.

CONCLUSION

The factorial moments for tree-like biocircuits with polynomial transition functions form a closed system of ordinary
differential equations at any desired moment order. The formulas above connect the initial-time moments F0, seen
as inputs, with later times values F(t), seen as outputs. The input-output relation is linear having time-dependent
coefficients. The coefficients are nested integrals of functions that multiply the decreasing factorials in the transition
probabilities.

Appendix: The input-output relation for the moments of the biocircuit from Fig.1A

Below we present the output values F(t) as a function of the input variables F(t = 0) ≡ F0. The coefficient that
does not depend on any F0 is called f ree. If the coefficient is zero, the corresponding input variable F0 is not present
in the list. The F33(t) moment is obtained by gluing the transition function f (t) to the left of F123.

587



1. F1

f ree: g1

F0
1 : 1

2. F2

f ree: g2

F0
2 : 1

3. F11

f ree: 2g1g1

F0
1 : 2g1

F0
11: 1

4. F22

f ree: 2g2g2

F0
2 : 2g2

F0
22: 1

5. F12
f ree: g1g2 +g2g1

F0
1 : g2

F0
2 : g1

F0
12: 1

6. F3
f ree: f g1g2 + f g2g1

F0
1 : f g2

F0
2 : f g1

F0
12: f

F0
3 : 1

7. F112
f ree: 2g1g1g2 + 2g1g2g1 +

2g2g1g1

F0
1 : 2g1g2 +2g2g1

F0
2 : 2g1g1

F0
11: g2

F0
12: 2g1

F0
112: 1

8. F122
f ree: 2g2g2g1 + 2g2g1g2 +

2g1g2g2

F0
1 : 2g2g2

F0
2 : 2g1g2 +2g2g1

F0
22: g1

F0
12: 2g2

F0
122: 1

9. F1122
f ree: 4g1g2g1g2 + 4g2g1g1g2 +

4g1g2g2g1 + 4g2g1g2g1 +
4g1g1g2g2 +4g2g2g1g1

F0
1 : 4g1g2g2+4g2g1g2+4g2g2g1

F0
2 : 4g2g1g1+4g1g2g1+4g1g1g2

F0
11: 2g2g2

F0
22: 2g1g1

F0
12: 4g1g2 +4g2g1

F0
112: 2g2

F0
122: 2g1

F0
1122: 1

F13

f ree: 2 f g1g2g1 +2 f g1g1g2 +2 f g2g1g1 +g1 f g1g2 +g1 f g2g1 + f g1g2 + f g2g1

F0
1 : 2 f g2g1 +2 f g1g2 +g1 f g2 + f g2

F0
2 : g1 f g1 +2 f g1g1 + f g1

F0
3 : g1

F0
11: f g2

F0
12: 2 f g1 +g1 f + f

F0
13: 1

F0
112: f

F23

f ree: 2 f g1g2g2 +2 f g2g1g2 +2 f g2g2g1 +g2 f g1g2 +g2 f g2g1 + f g1g2 + f g2g1

F0
1 : 2 f g2g2 +g2 f g2 + f g2

F0
2 : 2 f g1g2 +2 f g2g1 +g2 f g1 + f g1

F0
3 : g2

F0
22: f g1

F0
12: 2 f g2 +g2 f + f

F0
23: 1

F0
122: f

F123

f ree: 4 f g1g2g1g2 + 4 f g2g1g1g2 + 4 f g1g2g2g1 + 4 f g2g1g2g1 + 4 f g1g1g2g2 + 4 f g2g2g1g1 + 2g2 f g1g2g1 +
2g2 f g1g1g2 +2g2 f g2g1g1 +2g1 f g1g2g2 +2g1 f g2g1g2 +2g1 f g2g2g1 +g1g2 f g1g2 +g2g1 f g1g2 +g1g2 f g2g1 +
g2g1 f g2g1 + 2 f g1g2g1 + 2 f g2g1g1 + 2 f g1g2g2 + 2 f g2g1g2 + 2 f g1g1g2 + 2 f g2g2g1 + g1 f g1g2 + g1 f g2g1 +
g2 f g1g2 +g2 f g2g1 + f g1g2 + f g2g1
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F0
1 : 4 f g1g2g2+4 f g2g1g2+4 f g2g2g1+2g1 f g2g2+2g2 f g1g2+2g2 f g2g1+g1g2 f g2+g2g1 f g2+2 f g2g1+2 f g1g2+

2 f g2g2 +g1 f g2 +g2 f g2 + f g2

F0
2 : 4 f g2g1g1+4 f g1g2g1+4 f g1g1g2+2g2 f g1g1+2g1 f g2g1+2g1 f g1g2+g2g1 f g1+g1g2 f g1+2 f g1g2+2 f g2g1+

2 f g1g1 +g2 f g1 +g1 f g1 + f g1

F0
3 : g1g2 +g2g1

F0
11: 2 f g2g2 +g2 f g2 + f g2

F0
22: 2 f g1g1 +g1 f g1 + f g1

F0
12: 4 f g1g2 +4 f g2g1 +2g1 f g2 +2g2 f g1 +g1g2 f +g2g1 f +2 f g1 +2 f g2 +g2 f +g1 f + f

F0
13: g2

F0
23: g1

F0
112: 2 f g2 +g2 f + f

F0
122: 2 f g1 +g1 f + f

F0
1122: f

F0
123: 1
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