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The optimization procedure that we present is based on a closed-form exact analytical solution for the three-
dimensional transfer matrix that we put forward in arXiv, arXiv:2303.06765 (2023). The analytical solution is
valid for all modes, either propagative or evanescent, and any non-magnetic isotropic pattern with frequency-
dependent permittivities. In this paper we exemplify the use of the transfer matrix elements to optimize a patterned
bilaminar structure such that a subset of evanescent Bloch-Floquet modes (Mx , M y) 6= 0 acquire large scattering
matrix elements at a specified frequency. Such an excited resonant mode propagates along the device’s surface at a
frequency smaller than its Rayleigh frequency. These predictions are grouped into three categories. The first cat-
egory, inspired by topological photonics, is related to robustness of the resonant modes with respect to the change
of the dielectric constants, quantified as a map from the real to integer numbers. The second is based on resonant
frequency identification, whereas the third is focused on high Q-factors and the use of a complex frequency plane
to estimate the Fano-Lorentz spectral line shape for the resonant modes. All the predictions based on the proposed
optimization were confirmed by a high-performance analysis software package [CST Studio Suite (2022)]. ©2024

Optica PublishingGroup

https://doi.org/10.1364/JOSAB.497185

1. INTRODUCTION

Thin stacks of layers can control electromagnetic fields to
enable a variety of applications in the form of waveguides for
augmented reality [1,2], frequency-selective surfaces for 5
and 6G networks [3], wearable applications [4], and surface
wave-mediated sensing applications [5,6]. Optimization meth-
ods like evolutionary and combinatorial methods [7,8] have
motivated a large number of design approaches. Some opti-
mization methods are NP-hard, and so it is important to have
theoretical results that can help to narrow down the search
space. To this end, we are employing the transfer matrix method
[9–17], which relates the fields from the input to the output
of thin stacks of in-plane structured laminae. We prefer to use
the term “structured laminae,” because it more reflects the
concepts we are referring to. The term “laminae” aptly captures
the concept of the discrete theoretical model we use, which is
based on an arrangement of parallel planes with no thickness.
A lamina consists of a plane together with the narrow void
that separates it from the neighboring plane. Moreover, each
plane exhibits a structured composition, characteristic of an
engineered material. Its unique characteristics arise from the

deliberate inclusion of artificial structures within a uniform host
medium. To utilize the theoretical model for a practical stack of
thin non-homogeneous layers, we posit that the layer’s structure
is positioned on the lamina’s plane, and the layer’s thickness
coincides with the thickness of the narrow void between it and
the next plane.

A key motivation for writing this manuscript is that in a world
increasingly dominated by data and algorithms, the insight
of closed-form formulas remains a source of inspiration. By
revealing the functional relationships between parameters and
outcomes, closed-form solutions provide deeper insights into
the system’s behavior. This deeper understanding, in turn,
facilitates further analysis, prediction, and design optimization.

The closed-form exact analytical solution that we developed
in [18], being expressed in terms of familiar physical concepts,
allows for the study of the factors that influence the optimization
result. This paper highlights a subtle distinction between the
transfer matrix method, viewed as a general concept, and trans-
fer matrix formulas. Specifically, the transfer matrix method
encompasses a broader, more general approach, while the trans-
fer matrix formulas emphasize the derivation of closed-form
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Fig. 1. π -π -rig pattern. The black arrows represent the λ̂-vectors,
whereas the red arrows represent the µ̂-vectors. The permittivity ε1L is
printed on the left triangle (A1,1, A−1,1, A−1,−1), whereas ε1R on the
right triangle (A1,−1, A1,1, A−1,−1), both on lamina 1. Same goes for
lamina 2 where ε2L and ε2R label the left and right triangles with respect
to the diagonal B−1,−1 B1,1. Outside the interior squares, and up to the
boundaries of the unit cell, the background permittivity ε1B is printed
on lamina 1 and ε2B on lamina 2. The color and label of each polygon
express the decomposition of the unit cell in polygons that carry a con-
stant value of the product ε1ε2. The unit cell corners, which are not rep-
resented, have their own (λ̂, µ̂)-pairs.

analytical solutions for the matrix elements. This unique focus
underscores the significance of closed-form solutions within the
context of the transfer matrix method.

The transfer matrix strongly depends on the thickness of the
laminae, which we consider to be analogous to a lattice constant.
This motivated us in [18] to consider Maxwell’s equations on a
discrete space. Pendry and MacKinnon obtained a meaningful
discretization of Maxwell’s equations [19] on a carefully chosen
simple cubic lattice [20] by retaining essential properties of the
longitudinal modes present in the continuum. This discretiza-
tion was put forward specifically as part of a finite-element
numerical algorithm [21].

In this paper, which is the optimization-driven section of
[18], we propose an optimization procedure for creating a
dielectric bilaminar (made up of two laminae) structure, Fig. 1,
on which a selected group of Bloch-Floquet modes propagates
along the laminae with large amplitudes, being evanescent in the
z-direction [22]. These resonances display a series of relevant
properties. One, covered in Section 5, is the robustness with
respect to the change of the dielectric constants. The resonant
frequencies are located close to the zeroes of the diagonal ele-
ments of the transfer matrix. As the dielectric permittivities
pass through different values, the zeroes are created or disappear
allowing us to define a topological map that counts the number
of resonant modes, Fig. 4.

In Sections 6 and 7 we find that the same bilaminar structure,
but with specifically selected dielectric constants, resonates with
a very large Q-factor, Fig. 13. Finally, in Section 8, the complete
analytical formula, applied on the optimized result, offers the

possibility to obtain the Fano-Lorentz spectral line shape for a
resonant mode, [23,24], through a zero-pole approximation,
Eq. (13), in the complex frequency plane, Fig. 15.

All the predictions based on the proposed optimization
were confirmed by a high-performance analysis software
package [25].

2. DEVICE DESCRIPTION

The optimization procedure is applied to the bilaminar pattern
in Fig. 1, which we will call π -π -rig. The locations of the two
laminae are described in the caption to Fig. 1. The thickness
of each lamina is denoted by c . The unit cell is a square with
corners positioned at (±π,±π), in length units chosen for a
desired frequency band. Inside the unit cell of each lamina sits
an inner square. Figure 1 shows two inner squares, as expected
for a bilaminar device. The corners of the unit cell are not visible
in Fig. 1 to save the space for the information pertaining to
the inner squares. In the foreground, the square has its vertices
labeled Bi, j , i =±1, j =±1 positioned at (±π/2,±π/2).
In the background, the square with vertices Ai, j is rotated
counterclockwise by an angle α. For α = 0, the squares’ vertices
coincide.

The separate dielectric patterns from the two layers create a
polygonal tessellation in the x -y plane, defined by regions of
constant value of the product ε1ε2. The ẑ-axis is coming out
from the figure’s page and x̂ is oriented from B−1,−1 to B1,−1.

All vertices of the tessellation have associated with them a
set of pairs of unit vectors, (λ̂, µ̂). The tails of the µ̂ vectors are
located at the vertices of the polygons, and they extend along
the edges. From the same vertex, and associated to each µ̂, origi-
nates another unit vector λ̂ in such a way that each pair (λ̂, µ̂) is
orthogonal and each triplet (λ̂, µ̂, ẑ) is right-oriented.

Take for example the origin O. There are four segments that
originate at O. One is the segment O A1,1, which carries a unit
vector denoted µ̂1 in Fig. 1. Then µ̂2, µ̂3, and µ̂4 are along
O B1,1, O A−1,−1, and O B−1,−1, respectively. All tails of these
unit vectors sit on point O. From the same point O originates
the another set of four unit vectors λ̂i , i = 1, . . . , 4. The last
geometrical parameter is related to the choice of a frequency
band, say in GHz or THz, which scales the device’s units to
mm or µm, respectively. Versus this unit of length we define a
unitless thickness parameter t :

t = [1 unit](c [unit])−1. (1)

The frequency, the wavelength, and all (x , y ) geometrical
distances that appear in the transfer matrix formulas are c -
scaled. For example, the c -scaled wavelength and frequency are
λ′ = t λ [unit]

1 [unit] and�= 2πλ′−1, respectively.
The geometrical data needed to compute the transfer matrix

for any polygonal tessellation consists of the coordinates of all
points, the orientations of all unit vectors, and a choice of the
thickness parameter. The other kind of data comes from the
permittivity jumps across polygonal segments. For example, for
point O in Fig. 1 the relative permittivity pair (ε1R, ε2L) and
(ε1L, ε2L) appears on the right-side and on the left-side looking
along µ̂1, respectively. As we cross µ̂1 walking in the direction
of λ̂1, slightly above point O, the change in relative permittivity
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introduces a jump that is a key ingredient in the transfer matrix
formulas.

3. TRANSFER MATRIX ELEMENTS

In this section, we present the essential information needed
to understand the construction of the objective function. The
transfer matrix elements we compute connect the IN electro-
magnetic field from the (x , y )-plane located c/2 below lamina
A to the OUT field located c/2 above lamina B, along the ẑ-axis.

We use a plane wave basis ψDIR
POL,BF, which is described by

three indices. The first, POL, is the polarization index, which
takes two values S and P . The second, DIR, is the direction of
propagation of the plane wave along the z-axis, which also take
two values,+ and−. The third, BF, is the Bloch-Floquet index
consisting of pairs of integer numbers (Mx , My ). The direction
of the incoming mode (Mx = 0, My = 0) is stated in spherical
coordinates by the angles (θ, ϕ).

The transfer matrix elements are defined in Eq. (2) as the
factors that connect the coefficients of the IN and OUT fields
decomposed in the reference medium plane wave basis:

C DIR
POL,BF =

∑(
TDIR;dir

POL,BF;pol,bf

)
Cdir

pol,bf, (2)

the sum being over indices (dir,pol,bf ) related to the IN
parameters.

Building a matrix out of the T-coefficients of Eq. (2)
requires a map from the two-dimensional Bloch-Floquet
index (Mx , My ) to a one-dimensional integer index
m = 1, 2, . . . ,∞. We use the Rayleigh frequency of (Mx , My )

to both map and order the Bloch-Floquet index. The Rayleigh
frequency is regarded as the cut-off frequency of the trans-
fer function of the free space. If the Rayleigh frequency of
(Mx , My ) is less than the Rayleigh frequency of (M′x , M′y ) we
order the Bloch-Floquet indices as (Mx , My ) < (M′x , M′y ).
If two distinct Bloch-Floquet modes have the same Rayleigh
frequency, the order used is the lexicographic order. Note
that this ordering depends on angles (θ, ϕ). The mode
(Mx , My )= (0, 0) has fRayleigh = 0 and it is mapped into
m = 1. The next fRayleigh > 0 is mapped into m = 2 and so on.

Our work was completed before the feature announcement
on Inverse Design in Photonics, so in Table 1 and for the rest
of the paper the unit cell dimensions are in cm. That will place
the resonant frequencies in the GHz domain where fabrication
of 3D photonic crystals is more accessible. However, since the

device is all-dielectric, the dimensions can be scaled for the THz
domain.

The process of building the transfer matrix out of its elements
starts with all 2× 2 matrices,

T−,−m,n =

(
T−,−Sm,Sn T−,−Sm,P n
T−,−P m,Sn T−,−P m,P n

)
, (3)

constructed for each pair (m, n). These matrices contain the
information about the transfer, through the device, of the mode
n with a negative direction present at IN into the mode m, also
with a negative direction but located at OUT.

From these 2× 2-matrices, construct the transfer matrix
T−,− using the Bloch-Floquet indices m and n:

T−,− =


T−,−1,1 T−,−1,2 T−,−1,3 · · ·

T−,−2,1 T−,−2,2 T−,−2,3 · · ·

T−,−3,1 T−,−3,2 T−,−3,3 · · ·

· · · · · · · · · · · ·

 . (4)

Once all four matrices T−,−, T−,+, T+,−, T+,+ are con-
structed in a similar manner, the complete transfer matrix
appears as

T =
(

T+,+ T+,−

T−,+ T−,−

)
. (5)

The elements of the scattering matrix can now be obtained
from the complete transfer matrix. The input and output have
a different meaning for the scattering matrix than OUT and
IN have for the transfer matrix. Instead of “DIR/dir,” for the
scattering matrix we use a position index, which is either min
or max depending on the position on the z-axis of the field at
z= IN or at z=OUT, respectively. The polarization and the
Bloch-Floquet indices remain the same.

The well-known procedure to obtain the scattering
matrix [20],

t(ξx , ξy )=

(
tmax,min tmax,max

tmin,min tmin,max

)
, (6)

requires the inverse of the transfer matrix T−,−:

tmin,max
= (T−,−)−1, (7)

tmin,min
=−tmin,maxT−,+, (8)

Table 1. Mode Ordering and Rayleigh Frequency for θ = 17.5◦ and ϕ = 0◦

(Mx , M y) m Pol., m fR [GHz]

(0,0) 1 S1 = S(0, 0), P 1 = P (0, 0) 0.0
(−1,0) 2 S2= S(−1, 0), P 2= P (−1, 0) 36.6827
(0,−1) 3 S3= S(0,−1), P 3= P (0,−1) 50.0289
(0,1) 4 S4= S(0, 1), P 4= P (0, 1) 50.0289
(−1,−1) 5 S5= S(−1,−1), P 5= P (−1,−1) 56.7146
(−1,1) 6 S6= S(−1, 1), P 6= P (−1, 1) 56.7146
(1,0) 7 S7= S(1, 0), P 7= P (1, 0) 68.23087
(−2,0) 8 S8= S(−2, 0), P 8= P (−2, 0) 73.36548
(−2,−1) 9 S9= S(−2,−1), P 9= P (−2,−1) 84.68336
(−2,1) 10 S10= S(−2, 1), P 10= P (−2, 1) 84.68336
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tmax,max
= T+,−tmin,max, (9)

tmax,min
= T+,+ + tmax,maxT−,−tmin,min. (10)

4. OPTIMIZATION PROCEDURE FOR
SELECTING THE DIELECTRIC CONSTANTS

We design-optimize a dielectric structure from Fig. 1 such that
a subset of evanescent Bloch-Floquet modes (Mx , My ) 6= 0
acquires large scattering matrix elements at a specified fre-
quency. Such an excited resonant mode propagates along the
plane (x , y ) at a frequency smaller than its Rayleigh frequency.
Specifically, in the frequency range under study, 37–50 GHz,
the optimization function is based on four modes. Two modes,
(0, 0) and (−1, 0), propagate, and two other modes, (0,±1),
are evanescent, Table 1. The goal is to find a set of dielectric
constants for which the modes (0,±1) resonate. To excite
the resonant modes, the plane wave (0, 0) coming from z< 0
lands at angles θ = 17.5◦ and ϕ = 0◦ on face A of the π -π -rig
oriented at α = 45◦. The thickness of each of the two laminae is
c = 0.25 mm.

To begin the optimization procedure, construct an 8× 5 sub-
matrix composed of transfer matrix elements that couple only
the S-polarization of the four modes selected, (0, 0), (−1, 0),
(0,−1), and (0, 1). The equations to solve are obtained from
Formula (2). The OUT set (DIR,POL,BF) is composed of
(±, S,m), with m = 1, . . . , 4 from Table 1. Given the absence
of any source at z=+∞, the coefficients C DIR

POL,BF are all zero
for (−, S,m), m = 1, . . . , 4. At IN, the set (dir,pol,bf ) con-
tains the incoming (+, S, 1) and the reflected (−, S,m), with
m = 1, . . . , 4. There are eight unknown coefficients, four at
OUT and another four at IN.

The 8× 5 matrix transfers the input column vector
(C+S1, C

−

S1, C
−

S2, C
−

S3, C
−

S4) into the output (C+S1,C+S2,

C+S3,C+S4, 0, 0, 0, 0). For ease of reading, the IN and OUT
coefficients are marked using distinct fonts. Within this
approximation, we can solve eight equations for eight unknown
coefficients, by fixing the input C+S1 = 1. The coefficients thus
found are the transmission and reflection coefficients for the
four modes under consideration.

To construct an objective function for the optimization
process we use a series of properties. The first property is that in
the vicinity of the resonant frequency the absolute value of the
determinant of the 4× 4 matrix (T−,−Sm,Sn) attains a minimum.
The second one is that the absolute values of the transmission
and reflection coefficients of the evanescent modes need to
attain high values. The third property is based on the absorp-
tance factor defined as 1− |C+S1|

2
− |C+S2|

2
− |C−S1|

2
− |C−S2|

2,
similar to the definition from [26]. The absorptance factor
goes through a maximum around the resonant frequency. The
objective function we use is

|Det(T−,−Sm,Sn)| + ||C
+

S1|
2
+ |C+S2|

2
+ |C−S1|

2
+ |C−S2|

2
− 0.5|

+ ||C+S3| − 10| + ||C+S4| − 10|.
(11)

We followed the logic of constructing an objective function
analogous to a potential energy composed of the sum of quad-
ratic terms. Furthermore, it is a common practice in numerical
optimization procedures to utilize the absolute value of a term
instead of its second power, or when the term is a complex
number.

Only the transmission coefficients for the evanescent waves
are present in Eq. (11) because we expect that the reflection
coefficients be very close, in absolute value, to the transmission
values. We choose 10 as a target number for this value. For the
absorptance factor the target values is chosen at 0.5.

For a fixed frequency in the range of 37–50 GHz, we
found a local minimum for this objective function in the
six-dimensional space of the dielectric constants, each constant
constrained to be between one and 12.

The minimization was completed in minutes using [27].
After scanning 100 frequencies, the local minimum we
selected is located at f = 41.29 GHz and ε1B = 4.99, ε2B =

2.96, ε1L = 7.60, ε2L = 5.66, ε1R = 5.93, and ε2R = 1.63. At
this minimum, Det(T−,−Sm,Sn)= 2.5× 10−5

− 3.7× 10−5i ,
C+S1 = 0.59− 0.0022i , C−S1 =−0.21− 0.59i , C+S2 =

0.041+ 0.31i , C−S2 = 0.04+ 0.34i , C+S3 =−10.03− 0.15i ,
C−S3 =−10.61− 0.18i , C+S4 =−3.92+ 9.20i , and C−S4 =

−4.13+ 9.74i . We see that the obtained determinant is a small
number and that the reflection and the transmission coeffi-
cients are close, in absolute value, to the value 10 we imposed.
The absorptance factor came out as 0.04, far from the value of
0.5. We included the absorptance in the objective function to
observe its deviation from 0.5. This discrepancy was anticipated
because, near the resonant frequency, the transmission and
reflection coefficients of the propagative modes exhibit minima
at slightly different frequencies than the resonance itself.

Technologically, the permittivities at the local minimum
point may not be easily implemented, although we constrained
the dielectric constants to be less than 12. Instead, below we
focus on studying the predictions put forward by the analytic
solution and compare them against numerical results from a
high-performance software package [25].

These predictions are grouped into three categories. The
first category, inspired by topological photonics, is related to
robustness of the resonant modes with respect to the change
of the dielectric constants, quantified as a map from the real to
integer numbers. The second is based on resonant frequency
identification, whereas the third is focused on high Q-factors
and the use of a complex frequency plane to estimate the Fano-
Lorentz spectral line shape for the resonant modes. In what
follows we confine ourselves to evanescent S-polarized resonant
waves excited by the (0, 0) S-polarized incoming wave.

5. MAP FROM THE REAL TO INTEGER
NUMBERS

The resonances in the scattering matrix elements appear as
zeroes of the determinant of the T−,− matrix. The mini-
mal T−,− matrix can be reduced to just the matrix element
T−,−Sm,Sm , presented in Section 9, the zeroes of which give the
first approximation for the resonant frequencies. To see that,
take a 2× 2 transfer matrix built only from the set T±,±Sm,Sm
and look at the resonance for the mode Sm as a singularity for
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Fig. 2. Theoretical matrix element T−,−S(0,−1),(S(0,−1) as a function of
frequency. The zeroes at 19.9 GHz and 48.86 GHz have a negative
and a positive slope, respectively. The Rayleigh frequency for the mode
(0,−1) is at 50.03 GHz, where a pole singularity is present. The
dielectric constants are ε1B = ε2B = 35.

Fig. 3. All matrix elements T−,−Sm,Sm that have at least one zero on
the real frequency axis. The zeroes with a negative slope are marked
as empty black circles, whereas the zeroes with a positive slope are in
green. There are three pole singularities in the range of frequency up
to 60 GHz, for (−1, 0), (0,±1) and (−1,±1) at 36.69, 50.03 and
56.71 GHz, respectively.

which Eq. (2) has a non-zero solution if all coefficients but
(DIR, POL, BF)= (+, S,m) and (dir, pol, bf)= (−, S,m)
are zero. It turns out that this simple approximation has predic-
tive power. As the dielectric constants change their values, the
zeroes of T−,−Sm,Sm appear or disappear, creating or destroying a
resonance. We study this phenomenon for variable ε1B = ε2B,
running from one to∞, with the rest of the dielectric constants
kept constant at the optimized values.

Hence, map ε1B = ε1B to the number of modes m =
(Mx , My ) for which the diagonal transfer matrix element
T−,−Sm,Sm , Section 9, has at least one zero on the frequency axis in
the interval [0, 60] GHz:

ε ∈R 7→ number of modes with zeroes. (12)

The analytic formulas position the zeroes as in Figs. 2 and 3.
As ε1B = ε2B increases from one to∞, Fig. 4, the number of

modes for which T−,−Sm,Sm crosses the real frequency axis increases
in discontinuous steps, then decreases as the dielectric constant
gets above 30. It reaches a plateau of 36 modes as ε→∞.
Figure 5 shows the position in the (Mx , My ) plane of the 53
and 36 modes for ε1B = ε2B = 35 and ∞, respectively. Two
adjacent steps in Fig. 4 have two distinct topological invariants,
i.e., distinct number of resonant modes. The boundaries of these
steps are not uniformly distributed on the horizontal dielectric
axis. Knowing the distribution of these boundary values may
play a significant role in assembling compound devices, which
are built by bringing together two structures with distinct topo-
logical invariants. Numerical simulations, performed via [25],

Fig. 4. Topological map of the number of modes m = (Mx , My ) for
which the corresponding diagonal transfer matrix element T−,−Sm,Sm has
a zero on the real frequency axis in the interval [0, 60] GHz. The con-
tinuous ε1B = ε2B variable runs from one to∞. The inset’s horizontal
axis spans 64–300, extending the figure’s range of 1–64.

Fig. 5. Modes m = (Mx , My ). There are 53 modes with a zero on
the real frequency axis for ε1B = ε2B = 35 and 36 modes for∞.

confirm that five modes resonate for ε1B = ε2B = 1 and 53 for
ε1B = ε2B = 35.

One step deeper into the analysis of the zeroes is provided by
propagation along channels.

A major finding in [18] is that the transfer matrix elements
can be expressed as a sum of a small number of terms, which
we call channels. Specifically, the computation starts with 729
path operators that transfer the field from the first to the second
lamina. Fortunately, many of these path operators come up
with a zero contribution and the results of the paths that con-
tribute can be further grouped together in simple terms, which
we call channels. Each channel has the interesting attribute
of being a product of two terms that bear distinctive features.
One term depends on the permittivities, while the other does
not. The other term is only dependent on the properties of the
excitation wave and the Bloch-Floquet index. Here, we focus
on S-polarized resonant surface waves excited by an S-polarized
incident field. The transfer of the incident S field into the S
output field flows along five channels. The following analy-
sis of the optimization results highlights the value of channel
decomposition.

Channel 1 SS does not depend on the dielectric con-
stants and is positive for any frequency and direction p⊥,
Fig. 6. Some other channels have to be negative for T−,−Sm,Sm
to cross the frequency axis. Interestingly, each channel
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Fig. 6. Channel 1 for all 53 matrix elements T−,−Sm,Sm from Fig. 5.
Channel 1 is independent of ε.

Fig. 7. Channel 2 for all 53 matrix elements T−,−Sm,Sm from Fig. 5, for
two values of ε1B = ε2B.

Fig. 8. Channel 3 for all 53 matrix elements T−,−Sm,Sm from Fig. 5, for
two values of ε1B = ε2B.

Fig. 9. Channel 4 for all 53 matrix elements T−,−Sm,Sm from Fig. 5, for
two values of ε1B = ε2B.

keeps a constant sign as a function of frequency, namely,
(1,+), (2,−), (3,−), (4,+), and (5,−), noticeable in
Figs. 7–10.

From Fig. 8 we see that Channel 3 is two orders of magnitude
smaller than the other ones, so it does not lead to creation or
destruction of a zero, but contributes to its location on the fre-
quency axis. As ε1B = ε2B increases the negative contribution
starts to dominate the positive one and two phenomena appear:

Fig. 10. Channel 5 for all 53 matrix elements T−,−Sm,Sm from Fig. 5,
for two values of ε1B = ε2B.

Table 2. Variable Layer Width

c [mm] t F [GHz] �num �theory �%-error

0.100 10 47.540 0.0996365 0.0993646 0.27
0.200 5 43.376 0.181819 0.180396 0.78
0.250 4 41.667 0.218319 0.215294 1.39
0.275 4/11 40.693 0.234537 0.231701 1.21
0.300 10/3 39.908 0.250923 0.247551 1.34

the zeroes are pushed into lower frequencies and a variable num-
ber of modes start to cross the frequency axis. This explains the
increase in the number of resonant modes as ε1B = ε2B increases.

6. ANALYTICAL PREDICTION OF THE
RESONANT FREQUENCY

A. The Thinner the Lamina, the Higher the Precision

From counting the number of zeroes for many modes, we
change the focus, Table 2, to predict the position of the zero,
�theory, of T−,−Sm,Sm for the optimized design modes, (0,±1).
Both modes have the same zero at ϕ= 0◦. The resonant fre-
quency depends on the thickness of the structure’s lamina, c . All
the other parameters are kept constant.

Notice that �%-error= 100 |�num−�theory|
�num , which mea-

sures the distance to the numerical simulation result �num
[25], decreases with the decrease of the width c . This is to
be expected because as c→ 0 the discrete approximation of
Maxwell’s equations improves.

B. Influence of the Rotation Angle α on the Resonant
Frequency

Out of the five channels for transfer of the SS-polarization, only
Channels 3 and 4 depend on the angleα. As the angleα is varied,
the resonant frequency for the degenerate modes (0,−1) and
(0, 1) changes in the vicinity of the frequencies determined
at α = 45◦, Figs. 11 and 12. Although the relative changes
are small, with an estimated linear slope of −0.96 MHz/deg
and −2.46 MHz/deg, respectively, the slopes are close to the
ones from the numerically simulated data. The systematic shift
between the theoretical and numerical values, described for
α = 45◦ in Table 2, is the same for all anglesα.

The study of the wedge effect, which comes out for
0◦ <α< 10◦ or for 80◦ <α< 90◦, will be covered in a different
manuscript.
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Fig. 11. Resonant frequency of the modes S(0,−1) and S(0, 1) as
a function of α. The dotted-dashed line corresponds to the numerical
data, whereas the continuum line to the analytical transfer matrix.

Fig. 12. Resonant frequency of the modes S(0,−1) and S(0, 1) as
a function of α. The dotted-dashed line corresponds to the numerical
data, whereas the continuum line to the analytical transfer matrix.

7. HIGH Q-FACTOR BILAMINAR STRUCTURE

To study the theoretical prediction for the amplitude we
choose a series of resonances with large Q-factors. The first
has Q = 4.8× 106 at −3 dB, Fig. 13. The theoretical val-
ues were computed using a 20× 20 transfer matrix. Two
systematic shifts, fshift and tshift, are needed to superpose the
theoretical formula 20 log10 |t

max,min
S(0,1),S(0,0)( f − fshift)| + tshift

on numerical simulations. For Fig. 13, fshift = 3.2 10−5GHz
and tshift =−3.9 dB. The lamina being thin, c = 0.01 mm, the
shifts are small with respect to the frequency and amplitude at
resonance.

Variable ϕ offers another venue to study the amplitude
around a high Q-factor resonance. The modes (0,−1) and
(0,1) are degenerate for ϕ = 0◦, having the same Rayleigh and
resonant frequency. As the angle ϕ slides away from 0◦, the
scattering amplitude of the mode S(0,−1) decreases, whereas

Fig. 13. Resonance with a high Q-factor. The Q-factor at −3 dB
is Q = 4.8× 106. The black curve represents the theoretical trans-
mission from S(0, 0) at z- min to S(0, 1) at z- max. The red points
were numerically simulated via [25]. All parameters are equal to the
optimized values except for c = 0.01 mm and ε2R = 1.0.

Fig. 14. Resonances with a high Q-factor for variable incident
angle ϕ. The parameters are c = 0.05 mm and ϕ = 0◦, 10◦, and
15◦. All the other parameters are placed at the optimized values. The
continuous and dashed curves represent the theoretical transmission
from S(0, 0) at z- min to S(0, 1) and S(0,−1) at z- max, respec-
tively. For ϕ = 0◦, 10◦ and ϕ = 15◦, the resonant frequency, in GHz,
and the Q-factors are (49.30, 3.6× 104), (51.90, 5.2 103), and
(53.24, 1.3 104), respectively.

Table 3. Variable c for ϕ = 15◦
a

c [mm] fshift tshift Q

0.25 3.2 10−1 9.81 1.1 103

0.10 5.4 10−2 5.67 2.6 103

0.05 9.4 10−3 2.85 1.3 104

0.01 9.0 10−5
−3.78 1.2 106

aScattering matrix element for input S(0, 0) at z-min output S(0, 1) at
z-max. Frequency shifts are measured in GHz and the amplitude of shifts of the
scattering matrix elements in dB.

the scattering amplitude for the mode S(0, 1) remains excited at
high dB levels, Fig. 14.

The same trend was confirmed by numerical simulation.
Table 3 contains additional data for the comparison between
theory and numerical simulations for the high Q-factors.

8. COMPLEX-FREQUENCY PLANE AND THE
WEIGHTED FANO-LORENTZ LINE SHAPE

Moving beyond predicting the position of the resonant fre-
quency and its amplitude, the complete analytical solution
for the transfer matrix provides a simple but meaningful
approximation for the resonant line shape:

Fig. 15. Representation, in the complex frequency plane, of the
scattering matrix element Out S(0, 1) at z-min, In S(0, 0) at z-max.
The closed curves around the pole 41.286−i0.009 show the absolute
value of the scattering matrix as it tends to infinity. The argument of
the scattering matrix element is constant on the curves that connect the
zero at 40.843+ 0.027 i with the pole. The real resonant frequency is
located above the pole, at 41.286 GHz.
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tmin,max
S(0,1),S(0,0) =

CofactorS(0,0),S(0,1)(T−,−)
Det(T−,−)

∼= ρe i8 f − fzero

f − fpole
. (13)

Here tmin,max
S(0,1),S(0,0) is the scattering matrix element, which describes the transmission of the mode S(0, 0) from z-max, i.e., located

at z> 0, into the mode S(0, 1) from z-min, i.e., located at z< 0. The zero and the pole from Eq. (13) are located in the complex
frequency plane, both in the vicinity of the real resonant frequency [24]. The meromorphic approximation, Eq. (13), has a natural
structure of dipoles with the monopoles placed at fzero and fpole, Fig. 15.

The zero-pole model, extracted from a 20× 20 matrix tmin,max, is

tmin,max
S(0,1),S(0,0) = 0.053 e−2.732i f − fzero

f − fpole
, (14)

with frequency, in GHz, given by

fzero = 40.843+ 0.027i, fpole = 41.286− 0.009i .

Following [24], we express the scattering line shape |tmin,max
S(0,1),S(0,0)|

2 in different forms. The first is

|tmin,max
S(0,1),S(0,0)|

2(x )= ρ2 (δ + x )2 + γ 2

1+ x 2

= 2.81× 10−3 (−47.47+ x )2 + 8.55

1+ x 2
, (15)

where x =−
f−Re( fpole)

Im( fpole)
, δ =−

Re( fpole− fzero)

Im( fpole)
, and γ = Im( fzero)

Im( fpole)
. The second form is connected with the presence of a continuum back-

ground:

|tmin,max
S(0,1),S(0,0)|

2(x )= A0 + F0
(ν + x )2

1+ x 2
. (16)

We found two solutions for the parameters A0, F0, and ν, namely, A0 = 1.06× 10−5, F0 = 2.8× 10−3, and ν =−47.65, or A0 =

6.37, F0 =−6.36, and ν = 2.09× 10−2. This form is thus ambiguous as is also noted in [24].
The third, and final, format presents the resonant line shape as a weighted sum of a Fano and Lorentz line shapes:

|tmin,max
S(0,1),S(0,0)|

2(x )= A
(
η
(δ + x )2

1+ x 2
+ (1− η)

1

1+ x 2

)
, (17)

where the weight parameter isη= 1/(1+ γ 2)= 0.105 and A= ρ2(1+ γ 2)= 0.027.
The Fano line shape, which is the first term in Eq. (17), contributes 10.5% to the resonance line shape.

9. DIAGONAL T−,−Sm,Sm MATRIX ELEMENTS FOR THE π-π-RIG

Here is the list of the five channels through which the S-polarized electromagnetic field is transferred. The parameters are

p IN/OUT
x = 2π

MIN/OUT
x

lx
+� sin(θ) cos(ϕ), (18)

p IN/OUT
y = 2π

My IN/OUT

l y
+� sin(θ) sin(ϕ), (19)

where lx and l y are the c -scaled dimensions of the unit cell, (Mx , My ) is the Bloch-Floquet mode number,� is the c -scaled frequency,
and (θ, ϕ) is the direction of the (0, 0) mode.

From the dispersion relation of the Pendry-MacKinnon discrete electrodynamics, we can see that for both IN and OUT the pz

component appears in ϕz = e i c pz , where ϕz(ζ )= ζ −
√
|ζ 2 − 1|e

i
2 (arg(ζ−1)+arg(ζ+1)). The arg(ζ ) takes values on [−π, π) in such a

way that arg(ζ )=−π if Im(ζ )= 0 and ζ < 0. The argument ζ is defined as ζ = 1− �2

2 +
c 2

2 (p
2
x + p2

y ).
For simplicity, p IN

x below appears as px . Although for the diagonal matrix elements ϕz(ζ
IN)= ϕz(ζ

OUT), the IN and OUT indices
are retained in the argument to show the origin of these terms:

(T−,−Sm,Sm)Channel 1 =−δIN,OUT

(
(�2ϕz,OUT + 1)2 − (ϕz,OUT)

2
)

(
ϕ2

z,OUT − 1
)
ϕ3

z,OUT

, (20)



A124 Vol. 41, No. 2 / February 2024 / Journal of the Optical Society of America B Research Article

(T−,−Sm,Sm)Channel 2
= (6ε1B + ε1L + ε1R)

�2
(
�2ϕz,OUT + 1

)
8ϕz,IN

(
ϕ2

z,OUT − 1
)
ϕz,OUT

, (21)

(T−,−Sm,Sm)Channel 3
=

�2

4π2t2
(

p2
x + p2

y

)
ϕz,IN

(
ϕ2

z,OUT − 1
)

×

(
p2

x

(
csc(α)sec(α)ε2B (2 ln (ε1B)− ln (ε1L)− ln (ε1R))

+ ε2L

(
−csc(α)sec(α) log (ε1B)+

3csc(α) log (ε1L)

2(sin(α)+ cos(α))
−
(cot(α)− 2)csc(α)sec(α) log (ε1R)

2(cot(α)+ 1)

)

+ ε2R

(
−csc(α)sec(α) log (ε1B)−

(cot(α)− 2)csc(α)sec(α) log (ε1L)

2(cot(α)+ 1)
+

3csc(α) log (ε1R)

2(sin(α)+ cos(α))

))

+ px p y
csc(α)

sin(α)+ cos(α)
(ε2L − ε2R)

(
log (ε1L)− log (ε1R)

)
+ p2

y

(
csc(α)sec(α)ε2B

(
2 log (ε1B)− log (ε1L)− log (ε1R)

)
+ ε2L

(
−csc(α)sec(α) log (ε1B)+

(3 cot(α)+ 2)csc(α)sec(α) log (ε1L)

2(cot(α)+ 1)
−

csc(α) log (ε1R)

2(sin(α)+ cos(α))

)

+ ε2R

(
−csc(α)sec(α) log (ε1B)−

csc(α) log (ε1L)

2(sin(α)+ cos(α))
+
(3cot(α)+ 2)csc(α)sec(α) log (ε1R)

2(cot(α)+ 1)

)))
, (22)

(T−,−Sm,Sm)Channel 4
=−

�4

128ϕz,IN
(
ϕ2

z,OUT − 1
)

(64ε1Bε2B + 16ε1Bε2L + 16ε1Bε2R + 16ε2Bε1L + 16ε2Bε1R +
4(cos(α)− sin(α))

sin(α)+ cos(α)

csc2

(
1

4
(2α + π)

)
sec(α)(2 sin(α) (ε1L − ε1R) (ε2L − ε2R)+ cos(2α)+ 3) (ε1B − ε1R) (ε2B − ε2L)

− 4 cot(α)cot2

(
1

4
(2α + π)

)
(ε1B − ε1L) (ε2B − ε2L)

+ csc2

(
1

4
(2α + π)

)
sec(α)(2 sin(α)+ cos(2α)+ 3) (ε1B − ε1L) (ε2B − ε2R)

− 4 cot(α)cot2

(
1

4
(2α + π)

)
(ε1B − ε1R) (ε2B − ε2R)

4
(

2 tan
(α

2

)
+ cot(α)

)
((ε1B − ε1L) (ε2B − ε2L)+ (ε1B − ε1R) (ε2B − ε2R))

− 4tan2
(α

2

)
tan(α) ((ε1B − ε1L) (ε2B − ε2L)+ (ε1B − ε1R) (ε2B − ε2R))), (23)

(T−,−Sm,Sm)Channel 5
= (6ε2B + ε2L + ε2R)

�2
(
�2ϕz,IN + 1

)
8ϕ2

z,IN

(
ϕz,OUT − 1

) (
ϕz,OUT + 1

) . (24)
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10. CONCLUSION

To sum up, we show that the transfer matrix obtained from
Pendry-MacKinnon’s discrete Maxwell’s equations is extremely
useful for inverse design. Having access to a closed-form ana-
lytical solution for any polygonal-patterned bilaminar structure
allows for rapid and accurate design and analysis of these
structures, compared to iterative optimization.

A valuable way to proceed further is to extend the range of
applications of this work. One possibility is to exploit Fig. 4 and
bring together two devices with distinct numbers of resonant
modes. This would allow for the examination of propagation
along different channels at the interface. Other potential appli-
cations include metasurfaces [28], energy harvesting [29–31],
leaky-wave theory [31], and frequency-selective surfaces [32].
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