
IET Microwaves, Antennas & Propagation

Research Article

Band pattern of commensurate modulated
periodic structures

ISSN 1751-8725
Received on 20th January 2017
Accepted on 19th March 2017
E-First on 20th June 2017
doi: 10.1049/iet-map.2017.0053
www.ietdl.org

Aldo De Sabata1, Ladislau Matekovits2,3 , Ovidiu Lipan4

1Faculty of Electronics and Telecommunications, ‘Politehnica’ University of Timişoara, Bd. V. Parvan nr. 2, 300223 Timişoara, Romania
2Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi 24, I-10129 Torino, Italy
3School of Engineering, Macquarie University, Sydney, NSW, Australia
4Department of Physics, University of Richmond, Richmond, VA 23173, USA

 E-mail: ladislau.matekovits@polito.it

Abstract: Analogies with physical phenomena indicate that modulation of a material or geometrical parameter of a periodic
structure enriches its original band structure. The present work aims to provide an insight into the band-splitting phenomenon in
the case of commensurate modulation for a parallel-plate waveguide technology-based geometry. A modulated one-dimensional
parallel-plate waveguide signal integrity structure is numerically analysed to exhibit the appearance of band splitting and new
bandgaps. The modulation mechanism has a potential in dispersion engineering, as it allows controlling the number and
position of the electromagnetic bandgaps and the in-band characteristics of the field propagation. Generation of modes with
negative group velocities for a given frequency band is also achievable by this technique.

1 Introduction
Periodic structures have recently found many applications in
problems concerning applied electromagnetics. Two-dimensional
(2D) repetition of a unit cell built in microstrip or parallel-plate
waveguide structure technology has proven useful for filtering,
antenna feeding and design in view of obtaining prescribed
radiation patterns, improving signal integrity in high-speed digital
and mixed signal printed circuit boards and integrated circuits,
cloaking and so on [1–4].

Wave propagation in periodic structures is described by the
dispersion diagram (DD), which can feature (or not)
electromagnetic bandgaps (EBGs) [5, 6]. Certain analogies to
physical phenomena show that EBGs split when the modulation of
a certain material or geometrical parameter is superposed to the
initial periodicity of the structure [7]. The band splitting shows a
regular pattern when the period of modulation is commensurate
with the initial period of the structure. The pattern becomes a
fractal structure for the incommensurate case. Group-theoretical
deductions applied to the EBGs of a 2D or 3D structure contain
useful information but do not give a complete solution, so detailed
numerical solutions of the eigenvalue equations are necessary.

The present work aims to provide an insight into the band-
splitting phenomenon in the case of commensurate modulation for
a parallel-plate waveguide technology-based geometry. The
modulation of microstrip or parallel-plate waveguide structure
devices has potential applications to dispersion engineering issues
as, e.g. design of electronically switched surfaces, devices with
flatter group velocity, control of negative phase and group
velocities and so on. In Section 2, we discuss commensurate
modulation of periodic structures and show that, while impact of
modulation on the unit cells is mathematically tractable, the
determination of the exact band structure must rely on numerical
simulation (or experiment). In Section 3, we demonstrate the
application of the proposed discussion on a 1D structure that is
periodic in two orthogonal directions, built in strip-line technology,
which has been initially devised for signal integrity applications.
This structure has been selected for illustration because it has been
optimised for having a large EBG. Results reported in Section 3
confirm the behaviour of modulated structures as presented in
Section 2. Conclusions are drawn in Section 4.

2 Commensurate modulation of 1D periodic
structures
Consider an infinite 1D periodic structure composed of a unit cell
of length d that extends along the x-axis. The electromagnetic
waves propagating through this structure at a specified frequency ω
are Bloch waves ψ . A Bloch wave has the special property that
waves at one end of a unit cell are related to waves at the other unit
end by

ψ(x + d) = e− jkdψ(x) (1)

For a given frequency f, the transmission characteristics of the
structure depend on the nature of Bloch wave's wavenumber
k = β − jα in (1). When k has a non-zero imaginary part, the wave
is evanescent. In what follows we are interested in propagating
waves for which the imaginary part is zero. Plotting the (k, f)
relation for real k yields the DD of the structure [5].

The DD of a periodic structure is determined by solving an
eigenequation of the form:

AV = λV (2)

where A is a transmission matrix depending on the structure of the
unit cell, λ is the eigenvalue and V is the eigenvector. For example,
in the case of infinite periodic structures, A can be the ABCD
matrix of the unit cell [6, 8]. By setting λ = e− jkd, (2) can be solved
for different frequencies. For some frequencies, the waves are
evanescent or a solution to the eigenproblem (2) does not exist.
These frequencies belong to EBGs and so there are no propagating
waves at these frequencies. To find the propagating modes, we are
searching for distinct solutions of (2) for −π ≤ kd ≤ π. The
propagating solutions are periodic with respect to the normalised
wavenumber kd, with period 2π, and can be grouped into several
continuous functions of k called modes [5, 6, 9]. EBGs might occur
between some modes.

We now consider that one geometrical or material parameter of
the periodic medium is subjected to a second periodically
impressed motif, of period d′, which may be commensurable or not
with the initial period d. In the commensurate case, we have

pd′ = qd = δ (3)
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where p and q are two coprime integers. The whole modulated
structure consists of the repetition of the unit cell with the large
period δ = qd.

This periodic alteration of the initial structure can be referred to
as modulation. For example, the length ℓ of a certain element in
the large period unit cell can have a sinusoidal variation

ℓn = ℓ + ℓmsin 2π
d′ x + ϕ |x = n(p/q)d′ (4)

Similar variations can be imposed to material parameters or to
lumped elements entering into the structure of the large unit cell.
The relation between the competing periods d, (d′) and δ plays an
important role in the response of the structure to an incoming
electromagnetic wave. Previous evidence shows that the
modulation has a profound impact on the unmodulated EBGs [10,
11]. One of the effects is the splitting in a (large) number of new
EBGs [7].

The analysis of the EBGs for the modulated structure is drawn
from the study of 1D polyatomic molecules [5, 10]. We do not
intend to convey the idea that the properties of a 1D model are
straightforwardly generalisable for explaining 2D or 3D structures.
To obtain the specific positions of the splitting of different bands
for a 1D structure we used numerical simulations. However, the 1D
analysis is useful to emphasise the basic band splitting
phenomenon introduced by the modulation.

Let us consider first the unmodulated structure, of period d, as
consisting of a larger period δ = qd, for which the transmission
matrix is Aq and the eigenequation reads

AqV = μV (5)

The eigenvalues resulting from (2) and (5) are related by μ = λq.
Since in the case of real wavenumbers, we have the trivial equality
[e− j(kd + (2nπ /q))]q = e− jqkd, distinct solutions for modes are obtained
only on the interval −(π /qd) ≤ k ≤ (π /qd). We denote by f(k) a
mode provided by (2), where f stands for the frequency and
−(π /d) ≤ k ≤ (π /d).

Then f q, which represents the same mode but provided by (5),
is a multivalued function that maps k from −(π /qd) ≤ k ≤ (π /qd)
into the set

f q k = f k , f k + 2π
qd , …, f k + 2π q − 1

qd (6)

Note that the set (6) does not change if we make the substitution
k → k + (2π /qd), due to the periodicity of f. Therefore, 2π /qd is the
period of f q.

The above discussion can be illustrated graphically as shown in
Fig. 1. If the mode f(k) has the shape of Fig. 1a, then this mode will
be represented as shown in Fig. 1b for q = 2 and as shown in
Fig. 1c if q = 4. Note that the normalised wavenumber kd is marked
on the horizontal axis. The branches of the graphs of Figs. 1b and c
are constructed from the graph of Fig. 1a by applying (6). 

As a second step, let us consider now that a p/q geometrical
modulation is applied to the structure as in (4). The new period of
the structure is now δ from (3). If the modulation index (ℓm/ℓ in
(4)) is not very high, then the shape of the modes of the modulated
structure will not differ much from the curves introduced above
(e.g. in Figs. 1b and c). However, akin to a similar phenomenon
from solid state physics [12], the vanishing derivatives at kδ = ± π
enforce the splitting of modes as shown in Figs. 2a and b. Every
unmodulated mode, called parent mode, is broken into q branches
called child modes. If the parent mode is monotonous and occupies
alone a certain frequency range, then a maximum of [q/2] EBGs is
introduced by the modulation. The child modes have alternatively
group velocities of opposite signs. 

The shapes and number of the modes, i.e. of the DD, depend on
the modulation parameters p and q. For example, the shapes for
p/q = 1/4 will differ from those for p/q = 3/4.

An example of a structure built with transmission lines and with
a known A matrix, [8, p. 547], illustrates the effects of modulation
and the appearance of EBGs. The unit cell of Fig. 3a consists of a
capacitance connected between two segments of lossless
transmission line with d = 3.5 cm, C0 = 1 pF, characteristic
impedance Z0 = 50 Ω and phase velocity on the lossless lines
vph = 2.75 × 108 m/s [6, 8]. The restricted representations for the
first four propagating f-modes and f 2-modes are represented in
Fig. 3b. There are no new EBGs for the f 2-modes, according to the
previous general discussion. 

However, new EBGs appear if the capacitances of the nth unit
cell are modulated

Cn = C0 + Cmsin 2π
d′ x + ϕ |x = n(p/q)d′ (7)

Fig. 3c represents the case p/q = 1/2, Cm = 0.5 pF and ϕ = 0.

Fig. 1  One mode of the unmodulated structure (frequency versus normalised wavenumber, one period) calculated with
(a) (2) (see text), (b) (5) for q = 2, (c) (5) for q = 4. The values of π and π /2 along the vertical axis in (b) and (c) correspond to the phase difference kd in (a)
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3 Modulation in parallel-plate waveguide
structure technology
The above analysis shows that, by introducing a parameter
modulation over q unit cells of an infinite 1D lattice (i) each mode
splits and (ii) a maximum of [q/2] additional EBGs occur out of
each mode (iii) the fundamental period of the modulated DD is
reduced by a factor of q. Can these guiding rules offer insight into
DD modification for more complex structures? To this end, we
modulated a 1D structure, which consists of a sandwich of two

dielectric layers confined between two metal planes. Circular metal
patches are inserted periodically at the interface of the dielectrics
and are connected to the lower metal plane (ground) by four vias
with metal walls. Coin-shaped metal inclusions are inserted into
the upper dielectric layer and are connected by cylinders to the
upper metal plane. There are four cylinders per unit cell; their
centres are at the half of the distance between the patch and top
boundary (z = t2/2) Fig. 4 [13]. This structure has been introduced
in [14] for signal integrity applications and it has been chosen
because it was optimised to provide a large EBG. The same
structure is used here as a reference because it allows for an easier
demonstration of the modulation band splitting phenomenon. The
geometrical and material parameters are reported in Fig. 4. The
coins are equally spaced all over the structure and thus form a
periodic pattern with period one fourth of that of the structure in
the x-direction (with respect to the reference frame in Fig. 4).
Repeating the cell on an infinite 2D plane produces the DD from
Fig. 5 where only positive wavenumbers are displayed for
symmetry reasons. The DD was calculated with a commercial
eigenmode solver [15], that solved (2) by imposing periodic
boundary conditions in the x- and y-directions and electric
boundary conditions on the z-direction. Only waves propagating in
the x-direction have been considered for the DD in order to be
consistent with the 1D setting of Section 2. 

A modulation of p/q = 1/2 in (4) was applied to coins radii by
keeping an average value ℓ = rc = 1.8 mm, a modulation
amplitude ℓm = 0.6 mm and ϕ = 0. To illustrate the relation
between the DDs obtained before and after modulation, we have
first calculated the eigenvalues for the unmodulated structure
setting the spatial period at 20 mm, which is twice the distance d = 
10 mm of the unit cell in the x-direction. The ‘unit cell’ is depicted
in the inset of Fig. 4. The modes obtained by solving (5) with q = 2
by means of the same eigenmode solver are represented in Fig. 5
and bear two indices, the first one indicating the parent mode and
the second one its branch resulted by using (5) instead of (2).

After modulation, the marked modes of Fig. 5 will transform
into the DD of the modulated structure shown as an inset in Fig. 6.
The DD for the modulated coins is shown in Fig. 6. The modes in
Figs. 5 and 6 have been marked according to the results provided
by Microwave Studio, Computer Simulation Technology, v. 2015
[15]. It can be seen that the eight modes in Fig. 6 are children of
the four parent modes of Fig. 5. Note that the horizontal axes have
been normalised to d in Fig. 5 and to δ = 2d in Fig. 6. 

When the modulation is imposed, the DD needs to fulfil the
zero-derivative condition and so the restricted unmodulated
(parent) mode representation must change and show a bent of the
curves at the edges of the k-zone. This is visible in Fig. 6,
especially in between modes (1, 1) and (1, 2). The adjacent curves
thus break at the edges where normalised wavenumbers equal to
±π and new EBGs occur. New EBGs do not occur between higher-
order modes because they intersect in between each other.
However, the mode splitting is visible. Note also that mode (1, 2)
in Fig. 6 has a negative group velocity. This mode is related to
mode 1 of the original structure from Fig. 4, which exhibits
positive group velocity over all its extensions. The negative group
velocity is a consequence of the mirroring of the parent mode with
respect to the vertical axis.

The initial structure in Fig. 5 has an EBG between modes 1 and
2 in the frequency range of (4.26-6.49) GHz. The modulated

Fig. 2  Child modes of the modulated structure generated by the parent mode in Fig. 1a (frequency versus normalised wavenumber, one period)
(a) q = 2, (b) q = 4

 

Fig. 3  (a) Unit cell, (b) First four propagating f-modes, in blue, are
labelled by n = 1, 2, 3 and 4. For a common comparison, all figures are
plotted versus the normalised wavenumber kd. Modes f 2, in red, for the A2

matrix covers the normalised interval [ − π /2, π /2] because before
modulation both A and A2 have the same period, namely d. There are no
new EBGs for the f 2-modes, (c) Similar to Fig. 2a, EBG at π are introduced
by modulation with p/q = 1/2
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structure has two EBGs, one in the interval (4.26-6.50) GHz, that
almost coincides with the former one, and a newly introduced one
(EBG1 in Fig. 6) in the interval (3.06-3.52) GHz. The appearance
of the EBG1 between the child modes of the former mode 1 is a
direct effect introduced by the modulation. In conclusion, the
relationship between modulated and unmodulated cases is
presented for structures that can be described by field equations. As
a future work, geometry modulation will be applied to
electronically switched surfaces in order to tailor the EBG structure
of the states [16, 17].

4 Conclusions
We have discussed the phenomenon of band-splitting that occurs in
periodic structures with a superimposed modulation that is
commensurate with the initial period of the structure. We have
shown that, if the ratio of the modulation and initial periods is p/q,
then every mode that is present in the DD of the initial structure
gives rise to q modes in the DD of the modulated one.
Furthermore, if the initial mode is monotonous, then so are the
newly introduced ones, but monotonicity alternates from one mode
to the next one and so does the group velocity. New EBGs appear
between these new modes.

The modulation of periodic structures has potential applications
in dispersion engineering due to the control it provides on band-
structure and group velocity. Analysis of specific applications is
under consideration and will be the subject of future works.
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Fig. 6  DD for the modulated unit cell shown in the inset. Modulation is
done on the q = 2 unit cell of Fig. 5
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