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ABSTRACT

We describe an analog stochastic switch that exhibits three distinct phases as its parameters change. The phases are classi�ed by the mean and
variance of the switch’s output. A phase change appears if the mean or the variance tends to a �nite value or to in�nity. The switch can be
embedded in a large gene regulatory network for which the moment equations naturally close at the second order. This switch was used to
model the response of a heat-shock system.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5096778

Living systems have to constantly adapt to changes in the exter-
nal environment. For example, cells exposed to high temperatures
use a heat-shock system to survive. To sense the external changes,
cells engage gene regulatory networks. A theoretical understand-
ing of gene regulation must account for the �uctuations caused
by stochastic interactions of molecules, especially if present in
small numbers. The use of the stochasticmaster equation for reac-
tion kinetics has a long history that starts with Kramers. In the
last 60 years, the master equation was successfully solved for a
series of basic systems via special functions.However, these special
methods are not scalable to large networks, which are at the core
of systems biology. Our study focuses on a scalable method that
we use here to analytically solve a small but nontrivial stochas-
tic biocircuit. This switch can be used as a building block for a
shock-response gene regulatory network.

I. INTRODUCTION

Studying interactions and connectivity among di�erent compo-
nents of molecular networks is a major challenge in systems biol-
ogy. Identifying the structure of a network is facilitated at present
by technological advances in high-throughput molecular biology.1–3

One aspect of the network’s structure is represented by the topology
of the network. Di�erent node connectivity leads to di�erent net-
work topologies, which then explain di�erent phenotypical behaviors
at the organismal level.4–6 Another aspect is related to the dynam-
ical evolution of the network. Speci�cally, the time evolution we
focus on is described by the master equation introduced by Pauli in

Ref. 7, which was used and described subsequently in Refs. 8–10 and
elegantly reviewed by Chandrasekhar.11

The master equation is built upon the intrinsic stochasticity
of interactions that take place between the network’s nodes. The
stochastic processes we point out are discrete and involve only posi-
tive integer numbers since they describe changes in the number of
molecules. Due to the advent of systems biology, the challenge at
present is mainly connected with the use of the master equation for
large networks. Large networks are obviously challenging because of
the large dimensionality of their master equation. However, the mas-
ter equation is hard to solve for small networks too, because most
often, it leads to an in�nite number of ordinary di�erential equations.
Namely, the equations for the variance-covariance matrix depend on
the third order moments, which in turn depend on the fourth order
and so on.

A variety of procedures were proposed for cutting the sys-
tem of equations up to the second order. A major problem with
the majority of the trimming-down methods, called moment clo-
sure methods, is that the trimmed equations they deliver may not
describe a true stochastic process. Namely, we start with a stochastic
process described by a discrete probability distribution on positive
integers, write down an in�nite number of di�erential equations
for the moments, and then reduce the system of equations to a
�nite one. How do we know that there exists a probability distri-
bution, more so a discrete one and on positive integers, that will
produce the same �nite number of moment equations? A possible
solution to this conundrum is to approximate the probability dis-
tribution itself so that it generates a �nite system for the moment
equations instead of cutting or approximating the original in�nite
system of equations. This way we know from the start that the �nite
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equations were generated by a discrete positive integer probability
distribution.

The present paper is addressing these problems for a simple
but nontrivial switch. The switch presented here illustrates that even
two elementary components can generate interesting and nontrivial
biocircuits. In addition, we choose to work on a switch because turn-
ing genes ON and OFF plays a crucial role in living systems.12 One
ubiquitous functionality of a biocircuit is based on transforming a
small variation in an input signal into a large variation in the output
response. Out of a variety of possible examples, we will explore here
a speci�c switch that was used to describe experimental data on the
heat-shock response.13,14

To ensure that the system ofmoment equations is self-contained
at the second order, we need to use a limited number of distinct ele-
mentary components for the building blocks of the network. They
are listed in Ref. 15. Given that the list of elementary components is
narrow, it is useful to add to this list a series of nonelementary but
simple biocircuits that can be used to construct stochastic networks
solvable at the second-order moment level. This stochastic switch is
a biocircuit of this kind.

II. DESCRIPTION OF THE STOCHASTIC SWITCH

The stochastic switch is composed of two distinct molecule
species, types 1 and 2, represented by the labels q1 and q2 in Fig. 1.
Besides being a label in Fig. 1, q1 and q2 also represent the number of
molecules of types 1 and 2, respectively. This biocircuit behaves like
an analog switch because q2 builds up toward levels higher than the
level it starts at time t = 0. Analog processes are ubiquitous in liv-
ing systems. Many processes in biological cells are carried out in an
analog fashion rather than in a digital manner.16

There are two processes represented in Fig. 1. The �rst process
is the autodegradation of the type 1molecule (q1, q2) → (q1 − 1, q2).
During this process, q2 is not a�ected. This process is depicted by a
box marked ε1 = (−1, 0). It may look that a simple process is repre-
sented by an unnecessary complex drawing rule. However, if the ε1
box is eliminated from Fig. 1, the graphical representation is identical
with the one that is in widespread use. The line that stops on the type
1molecule ends in a bar that represents the degradation. The need for

FIG. 1. Asmolecule q1 degrades, it creates more q2 through a complex-formation
product rule.

the ε1 = (−1, 0) box, usually absent, is to precisely show the change
of the state from (q1, q2) to (q1 − 1, q2) during the process. This way
there is no ambiguity between the diagrammatic representation and
the mathematical equations.

In addition to ε1, we need to specify the transition probabil-
ity per unit time10 for this process. This is Tε1 = bq1, where b is a
parameter thatmultiplies the number ofmolecules q1. The arrow that
starts on the type 1 molecule and ends on the ε1 box is labeled by the
parameter b. To avoid any confusion, we mention that from the tran-
sition probability per unit time, we obtain the transition probability
Tε1dt = bq1dt for the ε1 process to take place in a small time inter-
val (t, t + dt). Because dt → 0, the transition probability is less than
1 for any choice of the parameter b and any value of q1. The transi-
tion probabilities for events on a �nite time interval (t, t + τ) can be
computed from the transition probabilities per unit time.17

The second process is represented by ε2 = (0, 1) and
Tε2 = aq1q2. In this case, the molecule number q2 grows by 1,
whereas q1 stays constant. The transition probability depends on the
product of the molecule numbers q1q2. This fact has a strong con-
sequence on the production of the type 2 molecule. If q1 = 0 after
a sequence of degradations, the molecule 2 stops being produced
and stays at a certain level. However, and this is the subtlety of this
biocircuit, the complete degradation of q1 to q1 = 0 may become
very slow in comparison with the fast rate at which q2 increases. In
this situation, the transition probability Tε2 = aq1q2 becomes much
larger than the degradation transition probability Tε1 = bq1, leaving
a very small chance for the degradation process to be completed. The
molecule q2 will continue to be produced without a limit. A switch
that permits a limitless production of q2 is quite di�erent from a
switch for which q2 stops at a certain �nite level. We say that these
switches are in di�erent phases. The product aq1q2, which is responsi-
ble for the emergence of di�erent phases, is depicted as a node labeled
a in Fig. 1. There are two lines that meet at this node, one that comes
from q1 and another one that comes from q2. The line that emerges
from an ε2-box reaches only the type 2 molecule because during this
second process, only q2 is a�ected. The arrow at the end of this line
shows a production process. As for the degradation case, this con-
vention is widely used. To conclude, the diagrammatic representation
is based in the most general case on two kinds of lines. One, called
the control line, represent the transition probability. The control lines
start from the molecules that are part of the mathematical formula
for the transition probability. The other kind, called the action line,
start from an ε box and ends on the molecules that change under the
process.

In principle, wemay easily avoid drawing a diagram for a simple
biocircuit, like the one in Fig. 1. However, for large stochastic net-
works, a diagram is essential to visualize the connectivity between
di�erent parts. A diagram also helps to reduce a large network to
a series of connected subnetworks. For this paper, the main reason
for constructing the switch’s diagram is to visualize a mathematical
procedure, described in Sec. III, which helps revealing three distinct
phases of this stochastic switch.

In a previous work,13 we used the switch in the regime of small
coupling parameter a ' 0.1. For this regime, the approximations that
we used were su�cient to explain the experimental data. However,
this switch model may potentially be used in regimes that require
higher values for the coupling parameter a, so a complete study is
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FIG. 2. Asmolecule q1 degrades, it creates more q2 through a complex-formation
product rule.

warranted. Away to proceed is through computer simulations. Simu-
latingMonte Carlo paths for a large coupling parameter awas hard to
achieve because q2 quickly accumulates and reaches very high values
obstructing the emergence of a clear picture of the switch behavior.
The progress came once we realized that the method presented in
Ref. 15 leads, for this switch, to a closed-formmathematical solution.

In what follows, we aim (1) to explain the loop-closing (LC)
method of splitting the nonlinear node15 as applied to the stochas-
tic switch from Fig. 1, (2) to show that the LC-model of the switch,
Fig. 2, is completely solvable, (3) to study the phase changes of the LC-
model of the switch, (4) to use Monte Carlo simulations to support
the LC-model predictions, and, �nally, (5) to show, for special ini-
tial conditions for q1 and q2, that the solution to the original switch
(Fig. 1) leads to the same results obtained from the LC-model of the
switch (Fig. 2).

III. THE LC-MODEL FOR THE SWITCH

The master equation for the time-dependent probability distri-
bution P(q1, q2, t) for the original switch in Fig. 1 is constructed out
of two transition probabilities per unit time,

Tε1 = bq1, (1)

Tε2 = aq1q2, (2)

and reads

∂P(q1, q2, t)

∂t
= Tε1(q1 + 1, q2, t)P(q1 + 1, q2, t)

+ Tε2(q1, q2 − 1, t)P(q1, q2 − 1, t)

−
(

Tε1(q1, q2, t) + Tε2(q1, q2, t)
)

P(q1, q2, t). (3)

To generate the system of ordinary di�erential equations for the
moments, the master equation is transformed and written for the
moment generating function,

H(z1, z2, t) =

∞
∑

q1=0,q2=0

z
q1
1 z

q2
2 P(q1, q2, t), (4)

s
∂H(z1, z2, t)

∂t
= b(z−1

1 − 1)z1
∂H(z1, z2, t)

∂z1

+ a(z2 − 1)z1z2
∂2H(z1, z2, t)

∂z1∂z2
. (5)

The moments are generated from partial derivatives. For
example,

H2(t) =
∂H(z1, z2, t)

∂z2
|z1 ,z2→1 (6)

and

H122(t) =
∂3H(z1, z2, t)

∂z1∂z2∂z2
|z1 ,z2→1 . (7)

The equations for the mean values (�rst order moments) are

dH1

dt
= −bH1, (8)

dH2

dt
= aH12, (9)

whereas for the second order moments, they are

dH11

dt
= −2bH11, (10)

dH12

dt
= aH12 + aH112 − bH12, (11)

dH22

dt
= 2aH12 + 2aH122. (12)

Molecule q1 obeys trivial solutions,

H1(t) = H1(0)e
−bt , (13)

H11(t) = H11(0)e
−2bt . (14)

However, for molecule q2, the system is incomplete requiring
equations for the third order momentsH112,H122, which will require
fourth order moments and so on.

A way to break this in�nite chain of equations is to split the
product node that represents the aq1q2 transition probability. The
details of the procedure were reported in Ref. 15. Here, we present
its implementation for the switch. The �rst step is to transform the
topology of the network from the original version in Fig. 1 into a
new version in Fig. 2. Notice that the original topology is almost the
samewith the exception of the product node, which is split. The split-
ting creates two ε-boxes out of the original one. The second step is
to associate new transition probabilities to each of the new ε-boxes.
These new transition probabilities depend on the generating func-
tion for the split-node version from Fig. 2. To avoid confusion with
H(z1, z2, t), we denote by F(z1, z2, t) the generating function of the
split-node biocircuit fromFig. 2. The results fromRef. 15 require that
the coupling constant a from Fig. 1 splits into two time-dependent

couplings λa F12(t)

F1(t)
and (1 − λ)a F12(t)

F2(t)
. These time-dependent cou-

plings are not known in advance since they depend on the unknown
moments F1(t), F2(t), and F12(t). However, they are found from solv-
ing the system of equations for the moments generated from (15).
In addition, a new parameter 0 6 λ 6 1 is needed. The parameter λ

behaves like a weight parameter for the two new control lines. The
weight parameter for the control line that starts from q1 is λ, whereas
for the control line from q2 is 1 − λ.

The third and the last step of the procedure is to solve the time
evolution of the moments of the master equation for the split-node
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version. This is possible either by analytical or numerical methods
because the LC-procedure leads to a closed system of equations at
the second order moments. It is worth mentioning that the splitting
node procedure is not restricted to a two-molecule system. The pro-
cedure generates equations that are closed at second order moments
for genetic networks that contain any number of molecules. This
property allows any two split-node networks to be interconnected
and maintain the solvability at the second order moment and also
higher orders if those moments are needed.

The LC-master equation for the split-node switch is

∂F(z1, z2, t)

∂t
= b(z−1

1 − 1)z1
∂F(z1, z2, t)

∂z1

+ aλ(z2 − 1)
F12(t)

F1(t)
z1

∂F(z1, z2, t)

∂z1

+ a(1 − λ)(z2 − 1)
F12(t)

F2(t)
z2

∂F(z1, z2, t)

∂z2
. (15)

To continue the analysis of Fig. 2, notice that the action ε2 in
Fig. 1 is controlled by both q1 and q2, which is visible in the term

z1z2∂
2/∂z1∂z2 from (5). After splitting, Fig. 2, the action ε

′

2 is con-
trolled by q1, which is represented by z1∂/∂z1 in (15). The other

action, ε
′′

2 , is represented by z2∂/∂z2.
As stated above, a feature of the splitting-node approach is the

appearance of a new parameter denoted here by λ, which is absent in
Fig. 1. The value of the λ-parameter depends on the global behavior
of the system. Namely, for this switch, λ = 1 places the entire action
under the control of q1, whereas λ = 0 highlights q2 as the driver of
the switch. In general, the driver is identi�ed by the di�erence in the
number ofmolecules.15 If q1 < q2, then q1 is the driver and conversely
for q2 < q1. For this switch, λ = 1, which signi�es that the driver of
the switch is q1 because q1 only decays in time. For some networks,
a bistable biocircuit, for example, no molecule can be designated as a
driver15 since the stochastic paths meander from one attraction point
to another. For such situations, the λ-parameters, which can bemany
since each product node creates one, acquire values that are not the
extreme values of 0 or 1.

For a general biocircuit, the split-node procedure renders
numerically solvable systems of equations but not analytically solv-
able ones as we may expect, especially for large networks. However,
for this switch, the system of equations can be reduced to a manage-
able analytical form. The value of these analytical expressions does
not lie solely in their precise time-dependency. Anyway, the split
switch is meant to be embedded into a large network for which an
analytical solution is most likely unachievable. The formulas that will
be discussed below are valuable for their asymptotic behavior. They
show that the split switch has three phases. For weak coupling con-
stant a, both the mean and the variance of q2 grow toward a �nite
steady state equilibrium. This is phase 1. Increasing the coupling con-
stant, the switch enters phase 2, where the mean of q2 still reaches a
�nite steady state, but the variance grows in time to in�nity. Once
the coupling becomes large, in phase 3, both the mean and the vari-
ance continue to grow in timewithout reaching a steady state. In view
of this stochastic switch being initially employed for a heat shock
model,13,14 we see that the transition between di�erent phases may

be used as a response to heat shocks of di�erent degrees of intensi-
ties. For weak temperature shocks, in the vicinity of the physiological
temperatures, the system will produce a relatively small amount of
heat-shock proteins thatwill level out at a stationary state. If the shock
is above a �rst threshold, the heat-shock system may enter phase 2.
Here, since the variance is growing without an upper bound, in some
cells, the stochastic paths reach much larger levels than the average
mean of the population of cells. In phase 3, for strong shocks above
the second threshold, the heat-shock system responds fast producing
large amounts of proteins needed to protect the cells. The way the cell
is turning o� the heat-shock system is not part of the present switch.
Other feedback mechanisms are in place to detect the ever growing
levels of q2 in phase 3 and turn it o�.

We turn to analyze the analytical solutions of the split switch
and its three-phase behavior. The equations for q2 are

dF2

dt
= aF12, (16)

dF12

dt
= −bF12 + aλF12 + aλ

F11

F1
F12 + a(1 − λ)

F2
12

F2
, (17)

dF22

dt
= 2a(1 − λ)F12 + 2aλ

F2
12

F1
+ 2a(1 − λ)

F12

F2
F22. (18)

The solution for the mean value
〈

q2
〉

= F2 is written in terms of
the incomplete Gamma function,

0(s, x) =

∫ ∞

x

ts−1e−tdt, (19)

which is as follows:

F2(t) = F2(0)

(

F2(0)

aF12(0)

)− 1
λ

×

(

F2(0)

aF12(0)
+

eηη−ζ

b

(

0(ζ , ηe−bt) − 0(ζ , η)
)

)
1
λ

, (20)

where

ζ =
b − aλ

b
, (21)

η = λ
a

b

F11(0)

F1(0)
. (22)

The correlation F12 can again be solved in terms of the incom-
plete Gamma function,

F12(t) = F12(0)e
−bt+η(1−e−bt)+aλt

(

F2(0)

aF12(0)

)1− 1
λ

×

(

F2(0)

aF12(0)
+

eηη−ζ

b

(

0(ζ , ηe−bt) − 0(ζ , η)
)

)−1+ 1
λ

,

(23)
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whereas the second order moment for the molecule q2 is reduced to
an integral form,

F22(t) = F2(t)
2−2λ

(

F22(0)F2(0)
2λ−2

+
2(1 − λ)

2λ − 1

(

F2(t)
2λ−1 − F2(0)

2λ−1
)

+
2λ

aF1(0)

∫ t

0

ebτF2(τ )2λ−2F′
2(τ )2 dτ

)

. (24)

All these three solutions allow the study of the asymptotic
behavior as t → ∞. The behavior of the mean value F2(t) is revealed
by the asymptotic of 0(ζ , ηε) for ε = e−bt → 0,

0(ζ , ηε) ∼ 0(ζ ) + εζ

(

εηζ+1

ζ + 1
−

ηζ

ζ

)

. (25)

The term that decides the asymptotic behavior of F2(t) in (20)
is thus

ε
ζ
λ = e−t b−aλ

λ . (26)

If b − aλ > 0, the mean value for the switch attains a
steady state, whereas if b − aλ < 0, the mean continues to raise.
For b − aλ = 0, the asymptotic expansion contains −ln(ε), and so
the mean value tends to in�nity as t → ∞.

The asymptotic analysis for F22(t) goes as follows. If F2(t) grows
to in�nity, it is easy to see that F22(t) grows to in�nity too. However,
if F2(t) tends to a constant, then F22(t) may tend to a constant too or
to in�nity. Indeed, from the asymptotic behavior of F2(t), we obtain
the asymptotic behavior of the integral term to be eb(1−2ζ )t . If

1 − 2ζ = −
b − 2aλ

b
< 0, then F22 → const, (27)

1 − 2ζ = −
b − 2aλ

b
> 0, then F22 → ∞. (28)

For ζ = 1/2, the integral grows linearly with t and F22 diverges.
To summarize, we �nd that the split-node switch can be placed

in three phases:

phase 1 : λ
a

b
<

1

2
,

both q2 mean and variance → constants; (29)

phase 2 :
1

2
6 λ

a

b
< 1,

q2 mean → constant, q2 variance → ∞; (30)

phase 3 : 1 6 λ
a

b
,

both q2 mean and variance → ∞. (31)

In principle, we could stop at this point because only the split-
node switch is useful as a building block for a large network so that
the equations close at the second order moment. However, it is use-
ful to explore the behavior of the switch from Fig. 1 and show that
it also swipes three phases as the coupling parameter a increases.
This means that the node-splitting procedure preserves the phase
properties.

IV. PHASE TRANSITION FROM MONTE CARLO

SIMULATIONS

We ran a series of Monte Carlo simulations using the Gillespie
algorithm.18 For each parameter setting, we ran 104 paths. TheMonte
Carlo simulations suggest that, indeed, the switch moves from one
phase to another as the coupling a crosses the values of 1/2 and then 1
(Figs. 3–5). The 1/2 and 1 are the thresholds we obtain for b = 1 and
λ = 1. The set value b = 1 de�nes the unit of time, whereas λ = 1
is set by the driver,15 which for this biocircuit is q1. This expresses
the fact that at some point in time, q1 decreases below q2 and so q1
becomes the sole driver of q2. In addition, we con�rm the choice of
λ = 1 in Sec. V, where we approach the original switch from a di�er-
ent perspective. It is worth mentioning that q1 may not be the driver
if the switch is embedded into a larger network. In this case, another
molecule from the large network may in�uence the dynamics of the
switch, which requires λ 6= 1. For this reason, the split-node switch
is a biocircuit by its own and can be used for any λ. A variable λ o�ers
an additional �exibility vs the original switch, which has �xed phase
thresholds.

To obtain the phase transition thresholds from theMonte Carlo
simulations for Fig. 1, we look into the tail of the distribution of q2
after some time away from the start t = 0 (Fig. 6).

We compare the statistical behavior of the tail with the power-
law distribution. The reason we chose a power-law distribution is
because it stands out for its mathematical properties and for its sur-
prising materialization in physics and other �elds. The power-law
exponent is usually connected with the dynamical processes that
generate the power-law distribution like in the case of the phase tran-
sitions in thermodynamic systems. For the switch, the dynamics is
represented by the transition probabilities. The power-law exponent
depends on how fast the degradation of q1 takes place and on how
fast q2 accumulates through the coupling parameter a.

FIG. 3. Paths for q1 = 2, q2 = 1, b = 1. In phase 1, for which, a < 1/2, both
the mean and the variance tend to a constant value. The stairlike curves illustrate
stochastic paths of q2. The continuous black curve represents the mean value,
whereas the red curve represents the mean plus one standard deviation for q2.
The same meanings are associated with paths and the continuous curves for
Figs. 4 and 5.
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FIG. 4. Paths for q1 = 2, q2 = 1, b = 1. At the first threshold a = 1/2, the
switch transits from phase 1 into phase 2. Here, the mean value remains finite,
but the variance grows to infinity. For practical applications, for which time does
not reach infinity, this means that at the end of the process, a good fraction of
stochastic paths reaches high q2 values. The arbitrary units for the time are set
by b = 1.

Mathematically, a quantity x obeys a power law if it is drawn
from a probability distribution p(x) ∝ x−α , where α is the power-
law exponent or scaling parameter. Few empirical phenomena obey
power laws for all values of x. Usually, the power law applies only for
values greater than some minimum xmin. In such cases, only the tail
of the distribution follows a power law,

p(x) =
α − 1

xmin

(

x

xmin

)−α

, x > xmin. (32)

The moments of the power-law distribution,

〈xm〉 =

∫ ∞

xmin

xmp(x)dx =
α − 1

α − 1 − m
xmmin, (33)

FIG. 5. Paths for q1 = 2, q2 = 1, b = 1. Once a = 1, the switch enters from
phase 2 into phase 3 where both the mean value and the variance grow to infinity.
In this case, after a finite amount of time, most of the stochastic paths reached
high levels of q2.

FIG. 6. Tails for q1 = 2, q2 = 3. The estimated power-law exponents are
α̂ = 2.72 for a = 0.5 and α̂ = 1.85 for a = 1.0 instead of the theoretical α = 3
and α = 2, respectively. The data correspond to the time t = 15 in units set by
b = 1. For a = 0.5, xmin = 10 and for a = 1, xmin = 24.

diverge if

m > α − 1. (34)

We estimated the power-law exponent, α̂, from theMonte Carlo
simulations of the original switch (Fig. 1). The results, Fig. 7, show
the desired relation: as the coupling constant increases, the power-
law exponent decreases. The estimation of the power-law exponent
was computed using the poweRlaw package following the procedure
from Ref. 19. To ensure that the switch is not in a transient regime,
we estimated the power-law exponent for two times, t = 10 and
t = 15, in time units speci�ed by b = 1. For both times, the estimated
power-law exponents came out the same.

Although Fig. 7 con�rms that the split switch maintains the
phase properties of the original switch from Fig. 1, the inherent

FIG. 7. The estimated power-law exponent shows that the switch from Fig. 1
traverses all three phases as the coupling parameter a increases. For all
simulations, the time scale is set by b = 1, which places the first phase
threshold at a = 0.5 and the second at a = 1. The data correspond to the
time t = 15.
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limitations associated with the statistical estimation andMonte Carlo
simulations obscure the fact that the phase transition thresholds
are a = 1/2 and a = 1. Section V will show that the thresholds are
exactly those numbers, albeit the proof is only for special initial
conditions.

V. THE PHASES OF THE ORIGINAL SWITCH FOR THE

SPECIAL INITIAL CONDITION q1 =2 AND q2 =1

It would be useful to have an analytic solution for the original
switch in the limit t → ∞ for any initial condition. Such a solution
can be used to judge the LC method and also the statistical methods
used for the estimation of the power-law exponent, like the poweRlaw
package.19 Although we do not have a solution for any initial condi-
tion, we found one for the special case q1 = 2 and q2 = 1 at t = 0.
This solution, presented below, shows that, for this special initial con-
dition, the LCmethod is accurate, whereas the power-law estimation
is not.

The goal is to obtain the level of q2 after q1 = 0. Once q1 = 0,
the switch stops and so the q2-attained level remains �at for the rest
of the time as t → ∞. This way we obtain the probability distribu-
tion of q2 at t = ∞ from which we will obtain the phase thresholds.
The accumulation of q2 follows the Monte Carlo stochastic process
which runs in two stages. Following the Gillespie algorithm,18 �rst,
a uniform random number 0 ≤ UT ≤ 1 decides the length between
two consecutive reactions,

τ =
1

bq1 + aq1q2
ln

(

1

1 − UT

)

. (35)

Second, after the time interval τ selected above ends, another
uniform random number 0 ≤ UR ≤ 1 selects one reaction out of the
only two reactions available for this switch. If

Tε1

Tε1 + Tε2

≤ UR ≤ 1, (36)

then reaction ε2, q2 → q2 + 1 takes place. Otherwise, the other reac-
tion q1 → q1 − 1 is active. In what follows, we scale the time to
get b = 1, similar to the procedure explained for the Monte Carlo
simulations.

Each stochastic path can exhibit only two ε1 reactions, given that
q1 = 2. Once q1 = 0, the switch stops and the level of q2 remains the
same as t → ∞. We will use two parameters to uniquely describe a
path. One is the total number of reactions J that were active along
the path, including the last one q1 = 1 → 0. A second parameter, J1,
represents the position of the reaction q1 = 2 → 1 along the path.
The �nal level attained by q2 is J − 1. The time length of the path
from t = 0 until the end of reaction J is a random variable built up
as a sum of J random variables, (35), each one following a di�erent
exponential distribution. A time-dependent study of the stochastic
nonlinear switch needs to take into consideration the stochasticity of
time until q1 6= 0. However, for t → ∞, this is not necessary since
the relevant probability distribution is P(J1, J) for the path (J1, J) to
be generated.

The quantities of interest at t → ∞ are

〈q2〉 =

∞
∑

J=2

J−1
∑

J1=1

(J − 1)P(J1, J), (37)

〈(q2)
2〉 =

∞
∑

J=2

J−1
∑

J1=1

(J − 1)2P(J1, J), (38)

where J > 2 means that a path is based on at least two reactions and
J1 6 J − 1 is specifying that the q1-reaction (q1 = 1) → (q1 − 1 =
0) is the last, the Jth, reaction. Given that UR is uniformly sam-
pled, we get that P(J1, J) is composed of four factors. The �rst factor
contains the contribution of consecutive J1 − 1 reactions of the type
q2 → q2 + 1,

J1−1
∏

j=1

(

1 −
1

1 + aj

)

. (39)

Note that the probability for the reaction number J1 − 1 is set
up by the level of q2 = J1 − 1 reached by q2 before reaction number
J1 − 1.

After reaction J1 − 1, the level of q2 is J1 and so the second factor
that contributes to P(J1, J) is

1

1 + aJ1
, (40)

which is the probability for the �rst reaction (q1 = 2) →
(q1 − 1 = 1). Then comes again a series of consecutive q2 → q2 + 1
reactions, which gives the third part of P(J1, J),

J−2
∏

j=J1

(

1 −
1

1 + aj

)

. (41)

Finally, the probability for the �nal reaction (q1 = 1) →
(q1 − 1 = 0) is

1

1 + a(J − 1)
, (42)

which does not change the level q2 = J − 1. Altogether, these factors
give

P(J1, J) =

J−2
∏

j=1

(

aj

1 + aj

)

1

1 + aJ1

1

1 + a(J − 1)
. (43)

The sum over J1 in (37) is

J−1
∑

J1=1

1

1 + aJ1
= a−1(9(a−1 + J) − 9(a−1 + 1)), (44)

where 9(z) is the digamma function. Next, using the product

J−1
∏

j=1

aj

1 + aj
= (J − 1)!

0[a−1 + 1]

0[a−1 + J]
, (45)

we arrive at

〈q2〉 =
1

a2

∞
∑

J=2

(9(a−1 + J) − 9(a−1 + 1))(J − 1)!
0[a−1 + 1]

0[a−1 + J]

(46)

Chaos 29, 083107 (2019); doi: 10.1063/1.5096778 29, 083107-7

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

TABLE I. Comparison between the LC method and the solution to the nonlinear

switch for q1 = 2, q2 = 1, b= 1, t→ ∞. For the LC method, λ = 1.

a 〈q2〉 〈q2〉 LC 〈(q2)
2〉 〈(q2)

2〉 LC

1/8 64/49 1.31 2.25 2.08
1/4 16/9 1.77 56/9 4.59
1/3 9/4 2.23 63/4 8.93
5/12 2.98 2.87 69.06 23.65
7/16 3.16 3.08 124.84 34.00
31/64 3.76 3.61 2044.24 163.13
511/1024 3.98 3.81 524 284.01 2123.39
1/2 4 3.82 ∞ ∞
5/6 36 21.78 ∞ ∞
9/10 100 42.36 ∞ ∞
99/100 1000 529.7 ∞ ∞
999/1000 106 5422.38 ∞ ∞
1 ∞ ∞ ∞ ∞

and

〈(q2)
2〉 =

1

a2

∞
∑

J=2

(J − 1)

(

9

(

J +
1

a

)

− 9

(

1 +
1

a

))

× (J − 1)!
0[1 + 1

a
]

0[J + 1
a
]
. (47)

By Raabe Duhamel’s test, we obtain that the series for 〈q2〉
converges if a < 1, whereas the series for 〈(q2)

2〉 converges for
2a < 1. These conclusions are identical with the LC-method results
for λ = 1.

Since for q1 = 2 and q2 = 1 we have a series solution, it is
useful to compare the original switch from Fig. 1 with the split-
switch. Table I shows this comparison from which we recognize that
although the phases are the same, the split-switch lags behind the
original switch in terms of the accumulated number of q2 molecules.

In connection with the results of Table I, it is interesting to
observe the behavior of 〈q1q2〉. For the original switch and for
t → ∞, it follows that 〈q1q2〉 = 0 if 〈q2〉 → const. This is so because,
for 〈q2〉 to reach a steady state, the process needs to stop, which hap-
pens only when q1 = 0. If the process of accumulation of q2 never
stops, we have 〈q2〉 → ∞, and, at the same time, q1 6= 0. This implies
that 〈q1q2〉 → ∞. The conclusion is that in the limit t → ∞, the
correlation 〈q1q2〉 takes only two values, 0 or ∞. The same result
comes out of the LC-version of the switch. Equation (23) can be
written as

F12(t) = F12(0)e
−bt+η(1−e−bt)+aλt

(

F2(t)

F2(0)

)1−λ

. (48)

From here, we see that F12(t) → 0 as t → ∞ if F2(t) →
const, which happens in phases 1 and 2. However, F12(t) → ∞ if
F2(t) → ∞, which is the case for phase 3.

From the complete solution to the original switch for q1 = 2 and
q2 = 1, it is also useful to better understand Fig. 7 and the accuracy
of the statistical method to estimate the power-law exponent. From
Table II, we see that, for a = 0.5, the estimated value is α̂ = 2.69.

TABLE II. The power-law exponent α̂ and xmin for q1 = 2, q2 = 1. The data corre-

spond to the time t= 15 in units set by b= 1.

a α̂ xmin

0.1 5.15 3
0.2 4.28 5
0.3 3.62 8
0.4 3.03 13
0.5 2.69 11
0.6 2.30 9
0.7 2.09 11
0.8 1.93 15
0.9 1.94 44
1.0 1.76 24
1.1 1.67 11
1.2 1.69 94
1.3 1.60 24

However, from the complete solution we get that for a = 0.5, the
value for α actually is α = 3. Indeed, from (34) for α = 3, the mean
value converges, whereas the variance diverges. The other threshold
that comes from the complete solution is at a = 1 for which both
the mean and the variance diverge. The power-law exponent, from
(34) applied to this case, comes out as α = 2. However, the statisti-
cally estimated power-law exponent fromTable II that corresponds to
a = 1 is α̂ = 1.76. Both thresholds are underestimated for the initial
conditions q1 = 2, q2 = 1 (Fig. 8). The same underestimation is visi-
ble in Fig. 7 for every initial condition.We do not have a general proof
for the behavior of the original switch for any initial conditions so
that we cannot claim that the underestimation appears for any initial
conditions. However, we do have a general solution for the LC-switch
that gives precise thresholds, which are independent of the initial
conditions. Moreover, for q1 = 2 and q2 = 1, the LC-switch thresh-
olds and the original switch thresholds coincide for λ = 1, which
means that the LCmethodworks better than the statistical estimation
procedure. A justi�cation for choosing λ = 1 is based on the work.15

Namely, the value of 0 6 λ 6 1 takes its extreme values 0 or 1 when
one of the complex-formation molecule is present in a low number
than the other one. For this switch, q1 → 0, and so q1 is the molecule
that is lower in number than q2. In Ref. 15, it was found that the lower-
number-molecule controls the process. Speci�cally, by placing λ = 1

in (15), only the term aλ(z2 − 1) F12(t)

F1(t)
z1

∂F(z1 ,z2 ,t)

∂z1
survives, whereas

the other term, a(1 − λ)(z2 − 1) F12(t)

F2(t)
z2

∂F(z1 ,z2 ,t)

∂z2
, is eliminated. This

means that the master equation is driven only by q1 since the control

factor in the surviving term is z1
∂F(z1 ,z2 ,t)

∂z1
. It is worth mentioning that

the λ-parameter need not be equal to its extreme values of 0 and 1
when the LC-switch is embedded into a larger network. In this case,
q1 can be pumped up by interactions with othermolecules and so it is
not the only driver of the switch. Examples of this kind are presented
in Ref. 15. Another reason for working with λ 6= 0, 1 is when exper-
imental data are used for a statistical inference of the parameters of
the network described by the LC method. In this case, the statistical
inference may predict λ-parameters that are di�erent from 0 or 1.
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FIG. 8. Tails for q1 = 2, q2 = 1. The estimated power-law exponents, Table II,
are α̂ = 2.69 for a = 0.5 and α̂ = 1.76 for a = 1.0 instead of the theoretical
α = 3 and α = 2, respectively.

VI. CONCLUSION

We study the e�ects of a speci�c approximation procedure,
called the LC method, on a molecular switch that transits through
di�erent phases as its coupling constant increases. The approxima-
tion, which produces a di�erent switch, the split-node switch, main-
tains the phases of the original switch. Moreover, unlike the original
switch, the split-node switch can be used as a building block biocir-
cuit to assemble large networks. It is also worth emphasizing that the
deterministic version of the switch loses completely the phase transi-
tion property, allowing only phase 1 tomanifest itself for any strength
of the coupling constant. The stochastic switch has a richer behavior
than its deterministic counterpart.
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