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(4.11.2) redu: X%(¢) is periodic, with period 2T, and hence, according to Section 4.5

h{®) being Ea.?o:-sgaw_.ﬁo& spectral density function, : .
. ., : ation (4.5.3)), may be written as a Fourier series in the form,

to
. E[|dZ (o)1= h(w) do. (4.17
y) any stationary process ¢
of sine and cosine function R
with uncorrelated coefficients is certainly one of the most important ones re f,=n/2T and A, is given by
the whole of the theory of stationary processes. (The restriction “virtual , 1 T .
is due to the fact that in the continuous parameter case the process has t =3T —%N £().e 2 .
required for; ' .

stochastically continuous—the same condition as was
jven in the Wiel

Xi(n= Y A, | 4.11.7)

n=—0

n result, namely that (virtuall

The above mai
be represented as a «sum’ (of the form (4.11.1)

Ay

5)). We may now rewrite (4.11.7) in the form

spectral representation of the autocorrelation function g
Khintchine theorem.) Not only does it provide a «caponical form’: : {1 =
describing any stationary process, but, as pointed out above, it is crucia X()= |;\Hu Y Gr(wa)e ol S s (4.11.8)
the physical interpretation of power spectra. Itis a fascinating result al 2mn=-e
that it lends itself to a variety of different proofs which together .nm<o£w the function Gr(w) is defined for a: o by,
collection of mathematical ideas. The proof which we present below o S T
heuristic one in the sense that here we do not concern ourselves OVer Grw)= 1 _. XE(f) e dt
with the mathematical «frills.” However, the discussion will, we : NOY - ?
illustrate the essential ideas involved in the derivation of (4.11.1). Afor , ) r ) ,
N _%NS e _&. - (4.11.9)

statement of the result is as follows.

27n/2T, so that dw, = @n+1~ @n = 27/2T. :
Ithough X1-(t) is not the same as the function X (¢) defined by 4.7.1)
that Xr(r) was defined to be zero outside (~T, T)), the function
n@aoa.dw (4.11.9) is exactly the same as the Gr(w) defined by
Hence, if we now think of (4.11 .9) as defining Gr(w) in terms of the
X (t), then we know from (4.7.5) that when the ,A:on-no::m:Nm&

,Am:m:% function, h(w), exists,

1 [ 5] - he

of contipuous parameter statiol
ro-mean stochastically conti
onal process,{Z Aex..nzm th

Theorem 4.11.1 Spectral representation
processes Let {X (1)}, =0 <t <X, be a ze
stationary process. Then there exists an orthog
for all ¢, X (t) may be written in the form,
xX(= % e" dZ(w),

quare sense. The process {Z Aev

the integral wﬁ.ww defined in the mean-s
the following properties; .
(1) E[dZ(w)]=0, allw,

Gi) E[|dZ (o)1= dH (@), all w,
where H(w) is the ?e:-:cx.:\_nmwm& integrated spectrum of X(1t), .

(iii) for any two distinct frequencies, w, ', (w# o),
cov[dZ(w), dZ (w"]= E[dZ*(w) dZ(w')]1=0.

idering a single realization, X (f),ona finite int
utside this int

at, as T - o0,

|Gr(wn)| = ONT) = 0(1/¥5w,).

Gr(wy)|~ 0 as T >0, but (|G (wn)|8wn} = O(6w,) >0 as T > 0.
o.i,,aamno the function

1
Zelw) == _é G1(0)do.

Proof. We start by cons
_T<t=<T, and then make this realization periodic o

ﬂi.? we define a new function, X%(1), by,
=X, -T<t=T,

WDNHASL H Nl&:iv IN.ZEL I%QKELQEE
, 3.

XE@+2pT)=X*), p=+1,%2,....
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relationships between the spectral theory of stationary processes and other
branches of pure mathematics. We now give a brief sketch of some of these

-alternative proofs. :

Now ‘we know from - the: Wiener-Khintchine theorem .that (with
mﬁkc_zuo.v,.. o
E[X*(s)X(1)] = _. e dH (w). (4.11.27)
(A) ANALYTICAL APPROACH . S ~oo ,
Perhaps the most straightforward way of proving (4.11.4) rigorously is to
“reverse” the argument used in the heuristic proof of Theorem 4.11.1, i.e.
given the process {X (1)}, we define Z (w) by (4.11.14) (this defines Z(w) up
to an additive constant). We may then.show that Z(w) is an orthogonal
process (this follows fairly easily from the form of the factor multiplying X (¢)
inthe integral in (4.11.14)), and then prove that, with this definition of Z(w),
the integral on the right-hand side of (4. S 4) represents X (¢) in mean-:
square, i.e. that
]

This mﬁvaom_o_,. is due to Blanc-Lapierre and Fortet (1946), and furthe
details are given in Bartlett (1955), p. 169, and Yaglom (1962); p. 36.

mon, each fixed r we may E.Ew of exp(iwt) as a function of w, and henceforth
we will denote this function of @ by ¢(w), so that(4.11.27) can be written as,

EOXO=[ st dHe). @129

<<o now E:oacoo a mooosa I;Uoz space Hy, Er_or is the space “‘span-
ed” by the family of functions, g (w)}, —0< <00, 1.e. H, consists of all
unctions ¢ which may be mxvammwoa as _Eomq noBUEm:onm of the {¢,(w)},
e. 2—:0: Bmw be written in 90 mo:F ‘

&Aev M cidy, Aev

o

mﬁ _XS — _.la mxﬁc.u/ev dZ (w)

the {ci} w&:m constants),. ..Smnﬁro..a with functions which are obtained as
mits of such linear combinations. The inner-product between any two
nctions, ¢1(w), ¢:(w) in Hy is defined by,

(B) FUNCTION-THEORY APPROACH

Cramer (1951) constructed an interesting proof using the methods o
“function theory” in a Hilbert space setting. This approach has now becom
well established in the theory of stationary processes, and in particula
Parzen (1959), developed this technique in a very lucid m:g elegant manne
The basic ideas may be described as follows.

We first consider the collection of all Aooac_ox valued) random variab
U which have zero mean and finite variance, i.e.

E(U)=0, E(UP)<c.

G e)= [ st dH@). 31129

e =o£ setupa mapping, M, between elements of H, and elements of Hy
ch is wcor Emﬁ for each 1,

\SEAS: X(0),

We may show that this collection forms a Hilbert space H (see Section 4.
if we define the inner-product between any two random variables U, V.

(U, V)=EU*V),

S oﬁosaoa to linéar combinations of the @ (w)} by

M[E )| =L aMls, ()

so that the norm of U is then given by,

I Ut = mA_Q_J Emvcmsm. M, o._\omlw preserves inner-products since, for any s, f,
2.59 this definition of inner Eom:o» two random variables are :o,%ro : X X (1) = k_. < %/ dH —
gonal” if they are uncorrelated, and it is thus consistent with the use of th (X(s), X (1)) —co ¢ (@)i(w) (@) = (¢5(w), & ().

term “‘orthogonal” in probability theory usage.) For each ¢, X (¢) is a randon
variable of the above type and hence belongs to H. As ¢ varies from
400, X (¢) traces out a ‘“‘curve” in H; let H, denote the smallest subs
of H which contains this “curve”.

O ,3~ any interval, (wa, ws), define the “indicator function”, I, ., (w), by

1, Wa S w < wp,

vt =] .
e » (@) 0, .otherwise.
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Let(w_p < W1 < . .,.«A.eo < ... <wn-1 A.EL be a subset of points on Ew
" w-axis. The crux of the proof lies in recognizing the intuitively obvious fact
" ’that we can approximate to ¢.(w) by sums of the form, . _—

. .

But, by the definition of M, M[é:(w)]=X (1), and ¢,(w) is, by definition,
e function exp(itw). Hence we finally obtain, : : .

o

e . . At . . . N,«SH_. e dZ( ,
Av%nc.v -~ M P.NE....E: AEY - —c0 i AEV
. s, o | |
where a;= ?@L. In effect, we are simply forming a “step-functior . s w: writing @ for w,, @ +dw for w, in (4.11.31), we have,

approximation to-¢(w), and clearly the accuracy of the approximation W
increase as we increase n and decrease the interval between successt
points, w;, ;+1. In fact, there is a well known resuit in the theory of funct .o:,
which states that any continuous function can be constructed as the limit of
sequence of functions, starting from step functions of the above type, al

m:mNAev_J =dH ().

ull account of Cramer’s original proof is given in Doob (1953) and
inder and Rosenblatt (1957a), and a somewhat more general version
ntially the same approach is given by Parzen (1959, 1961a).

this result underlies one approach to the ammaao.u of Lebesgue. integ! € essence of the above proof may be described fairly simply in the z
tion—see Riesz and Sz. Nagy (1955). Hence, we may write, : ing way. What we are doing finally (as n—>0) is using a set of
) ) ’ : tions a t i iti ,
b0) = 1im T @ apores ). @11 ions as an or :omo:ﬁ basis for the-space H,, and then writing,
Now define the process Z (w) by writing, for any wa, Wpy 5.1 Wa < W, $(w) = _.l ¢.(68)5(0 —w) dé, all w. (4.11.32a)
| Z{(wp) ~ Z (wa) = MU g, ()], e : . S |
| : ()= Z(wa) : o nr‘;e.. the mapping of (6 — w) is, in effect, the quantity “{dZ (w)/dw}”,
Then Z(w) is clearly an orthogonal process since for any two non ing the mapping to the above representation of ¢, (w) immediately.
lapping intervals (w1, @2), (@3, @), . spectral representation of X (¢). In fact, these ideas can be made
MENQEVINAE%JNAE&lNAEHEnQE.S (@), L oy (©)) e, .Wn.a. a more succinct version of the above proof (whith
. : he limiting process) can be constructed as follows. First, we
g =0, by (4.11.29), (cf. (4.11 .11.324) in a more rigorous form as, .
Also, : : o . ,
e s s dre-o), | (4.11.320)
m:N Ahcvu| Nﬂsnvau = ZNS?ED Aev: = % &I‘AEV 3 . - . /'\
= Hi(ws)~ H(wa). _o o ( skep fan et
1= 70 o
Now applying the mapping M to each side of (4.11.30) we obt 0,  6<0,

YynIT STEP )

.ZEV.?BM lim ¥, a;M{I e__..e_,iﬁeﬁ E.n indicator function of the set (—00, §), i.e. I(6 —w)=

L AR ious notation. (Note that if the right-hand side of
_ w_.mmoM. SN Z (@) — Z (@)} d as a Lebesgue-Stieltjes integral then the result

. ; : ¢ do not even require continuity of the ¢,(@).) Now,
As n - oo and the intervals between the {w;} decreases the P L by
(4.11.32) converges to the Stieltjes integral, o Z(8)=MI[I(0 - w)].

o0

[ o) dztw)

m\, s, the previous definition of Z(6), recalling that
e now apply the mapping M to both. sides of -




